Optimization of support vector machine power load,,,,

Optimization of support vector machine power load,,,,

ID:39719169

大小:356.36 KB

页数:7页

时间:2019-07-10

Optimization of support vector machine power load,,,,_第1页
Optimization of support vector machine power load,,,,_第2页
Optimization of support vector machine power load,,,,_第3页
Optimization of support vector machine power load,,,,_第4页
Optimization of support vector machine power load,,,,_第5页
资源描述:

《Optimization of support vector machine power load,,,,》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、J.Cent.SouthUniv.Technol.(2010)17:406−412DOI:10.1007/s11771−010−0060−0OptimizationofsupportvectormachinepowerloadforecastingmodelbasedondataminingandLyapunovexponentsNIUDong-xiao(牛东晓),WANGYong-li(王永利),MAXiao-yong(马小勇)SchoolofEconomicsandManagement,NorthChinaElectric

2、PowerUniversity,Beijing102206,China©CentralSouthUniversityPressandSpringer-VerlagBerlinHeidelberg2010Abstract:Accordingtothechaoticandnon-linearcharactersofpowerloaddata,thetimeseriesmatrixisestablishedwiththetheoryofphase-spacereconstruction,andthenLyapunovexponent

3、swithchaotictimeseriesarecomputedtodeterminethetimedelayandtheembeddingdimension.Duetodifferentfeaturesofthedata,dataminingalgorithmisconductedtoclassifythedataintodifferentgroups.Redundantinformationiseliminatedbytheadvantageofdataminingtechnology,andthehistoricall

4、oadsthathavehighlysimilarfeatureswiththeforecastingdayaresearchedbythesystem.Asaresult,thetrainingdatacanbedecreasedandthecomputingspeedcanalsobeimprovedwhenconstructingsupportvectormachine(SVM)model.Then,SVMalgorithmisusedtopredictpowerloadwithparametersthatgetinpr

5、etreatment.Inordertoprovetheeffectivenessofthenewmodel,thecalculationwithdataminingSVMalgorithmiscomparedwiththatofsingleSVMandbackpropagationnetwork.ItcanbeseenthatthenewDSVMalgorithmeffectivelyimprovestheforecastaccuracyby0.75%,1.10%and1.73%comparedwithSVMfortwora

6、ndomdimensionsof11-dimension,14-dimensionandBPnetwork,respectively.ThisindicatesthattheDSVMgainsperfectimprovementeffectintheshort-termpowerloadforecasting.Keywords:powerloadforecasting;supportvectormachine(SVM);Lyapunovexponent;datamining;embeddingdimension;feature

7、classificationAccordingtothechaoticsolutionwithstochasticnature1Introductionintheinherentcertaintyofnonlinearsystems,itispredictableintheshorttermbutunpredictableinthelongDuringrecentdecades,numerousinvestigationsterm.Atpresentchaotictimeseriesforecastingmethodshave

8、beencarriedouttoimprovetheaccuracyofincludeglobalprediction[10],andforecastmethodelectricityloadforecasting.OnemethodistoforecastbasedonLy

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。