资源描述:
《《统计学参数估计》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、统计推断的基本问题估计问题(ch7)估计问题可分为参数估计与非参数估计。本章只介绍关于总体参数的点估计与区间估计。假设检验问题(ch8)第七章参数估计§1、点估计一、点估计问题的提出数理统计的基本任务就是依据样本推断总体特征.刻画总体X的某些特征的常数称为参数,其中最常用的参数是总体的数学期望和方差。例如,服从正态分布的总体X就是由参数μ=E(X),σ2=D(X)确定的。在实际问题中,常已知总体X的分布函数的形式,而未知总体X的一个或多个参数。根据样本提供的信息对总体X的未知参数作出估计,这类问题称为参数估计问题。参
2、数估计通常有两种方法:点估计和区间估计。一、点估计提法点估计问题提法:设已知总体X的分布函数F(x;θ)的形式,θ∈Θ(参数空间)为需要估计的参数。是来自总体X的一个样本,是其样本值.根据待估参数的特征构造一个适当的统计量用其观察值来估计未知参数θ.——θ的估计量——θ的估计值今后,不再区分估计量和估计值而统称为θ的估计,均记为.设已知总体X的可能分布函数族为:理论根据:样本矩(的连续函数)依概率收敛于总体矩(的连续函数).其中为待估参数.二、构造估计量的两种方法1、矩估计法矩估计法:用样本矩(函数)来估计总体矩(函数)
3、.证明辛钦定理再根据辛钦定理知由以上定义得下述结论:由第五章关于依概率收敛的序列的性质知以上结论是下一章所要介绍的矩估计法的理论根据.设总体X的前k阶矩均存在,而样本矩其中矩估计法就是:令总体的前k阶矩分别与样本的对应阶矩相等,即可作为待估参数的估计量(称为矩估计量),其观察值为待估参数的估计值(称为矩估计值).这是含k个待估参数的联立方程组,其解确定待估参数的个数k,求出总体的前k阶矩;求矩估计的步骤解方程(组)写出矩估计量和矩估计值.因此,会求总体矩,记住样本矩,就可求出待估参数的矩估计量与矩估计值.【例1】设
4、总体X服从[a,b]上的均匀分布,求未知参数a,b的矩估计量.〖解〗两个待估参数,连续型.先求总体的一,二阶(原点)矩.因为X∼U[a,b],所以由即解得:■【例2】求正态总体N(μ,σ2)的两个未知参数μ,σ2的矩估计量.〖解〗两个待估参数,连续型.先求总体的一,二阶(原点)矩.因为X∼N(μ,σ2),所以由.即解得μ,σ2的矩估计量分别为:■样本二阶中心矩,非修正样本方差【例3】求服从二项分布B(m,p)的总体X未知参数p的矩估计量。〖解〗单参数,离散型.由因为所以总体X的一阶矩(期望)为即故所求矩估计量为:■【例4
5、】已知总体X的概率密度为:〖解〗单参数,连续型.因为总体一阶矩其中未知参数θ>0,求θ的矩估计量.由故所求矩估计量为:即解得:■【例5】已知总体X的概率密度为:〖解〗单参数,连续型.因为总体一阶矩其中未知参数θ>0,求θ的矩估计量.不含θ,故不能由“样本一阶矩=总体一阶矩”解得所求矩估计,需要继续求二阶矩:河南理工大学精品课程概率论与数理统计由“样本二阶矩=总体二阶矩”得:于是,所求矩估计量为:■Γ函数定义2、极大似然估计法一位老猎人与他的徒弟一起打猎,两人同时向一猎物射击,结果该猎物身中一弹,你认为谁打中的可能性最大?
6、根据经验而断:老猎人打中猎物的可能性最大.极大似然估计法的思想就是对固定的样本值,选择待估参数的估计值使“样本取样本值”[离散型]或“样本取值落在样本值附近”[连续型]的概率最大。(1、极大似然估计法的思想单参数情形下面分离散型与连续型总体来讨论.(2、极大似然估计的求法设离散型总体X的分布律形式已知,θ为待估参数.为来自总体X的样本,为其样本值,则的联合分布律为:根据总体分布律写出似然函数:换x为xi这正是事件“样本取得样本值”的概率,称之为样本的似然函数,它是待估参数θ的函数.极大似然估计法:对固定的样本值,在参数
7、空间中选取使似然函数达到最大的参数值作为参数θ的估计值(称为极大似然估计值),它为样本值的函数,记为相应统计量称为参数θ的极大似然估计量.设连续型总体X的概率密度事件“样本取值落在样本值的邻域”的概率近似为形式已知,θ为待估参数。来自总体X的样本,为其样本值,则的联合概率密度为:达到最大值,相应的极大似然估计法:对固定的样本值,在参数空间中选取使上述概率达到最大的参数值作为参数θ的估计值(称为极大似然估计值)。由于因子与θ无关,故也使样本的似然函数称为参数θ的极大似然估计量。②、在参数θ的变化范围内求似然函数的最大值点①
8、、依据总体X的分布律或概率密度写出样本的似然函数:综上可得,求极大似然估计的步骤即为待估计参数的极大似然估计值;特别,当总体分布律或概率密度关于参数可导时,可通过解似然方程③、必要时,参照极大似然估计值写出极大似然估计量.或与之等价的来得到待估参数θ的极大似然估计值(驻点);【例6】求服从二项分布B(m,p)的总体X