ON DECAY OF SOLUTIONS to nonlinear schrodinger equations

ON DECAY OF SOLUTIONS to nonlinear schrodinger equations

ID:40086612

大小:149.17 KB

页数:6页

时间:2019-07-20

ON DECAY OF SOLUTIONS to nonlinear schrodinger equations_第1页
ON DECAY OF SOLUTIONS to nonlinear schrodinger equations_第2页
ON DECAY OF SOLUTIONS to nonlinear schrodinger equations_第3页
ON DECAY OF SOLUTIONS to nonlinear schrodinger equations_第4页
ON DECAY OF SOLUTIONS to nonlinear schrodinger equations_第5页
资源描述:

《ON DECAY OF SOLUTIONS to nonlinear schrodinger equations》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PROCEEDINGSOFTHEAMERICANMATHEMATICALSOCIETYVolume136,Number7,July2008,Pages2565–2570S0002-9939(08)09484-7ArticleelectronicallypublishedonMarch14,2008ONDECAYOFSOLUTIONSTONONLINEARSCHRODINGEREQUATIONS¨ALEXANDERPANKOV(CommunicatedbyMichaelWeinstein)Abstract.Wepresentgeneralresults

2、onexponentialdecayoffiniteenergysolutionstostationarynonlinearSchr¨odingerequations.Undercertainnatu-ralassumptionsweshowthatanysuchsolutioniscontinuousandvanishesatinfinity.Thisallowsustointerpretthesolutionasafinitemultiplicityeigen-functionofacertainlinearSchr¨odingeroperatoran

3、d,hence,applywell-knownresultsonthedecayofeigenfunctions.Inthisnoteweconsidertheequation(1)−∆u+V(x)u=f(x,u),x∈Rn,and,underrathergeneralassumptions,deriveexponentialdecayestimatesforitssolutions.Wesupposethat(i)ThepotentialVbelongstoL∞(Rn)andisboundedbelow,i.e.V(x)≥−cloc0forsome

4、c0∈R.Underassumption(i)thelefthandsideofequation(1)definesaself-adjointop-eratorinL2(Rn)denotedbyH.TheoperatorHisboundedbelow.Wesupposethat(ii)Theessentialspectrumσess(H)oftheoperatorHdoesnotcontainthepoint0.Note,however,that0canbeaneigenvalueoffinitemultiplicity.Thenonlinearityo

5、ffissupposedtosatisfythefollowingassumption.(iii)Thefunctionf(x,u)isaCarath´eodoryfunction;i.e.itisLebesguemeasur-ablewithrespecttox∈Rnforallu∈Randcontinuouswithrespecttou∈Rforalmostallx∈Rn.Furthermore,(2)

6、f(x,u)

7、≤c(1+

8、u

9、p−1),x∈Rnu∈R,withc>0and2≤p<2∗,where⎧⎨2n∗ifn≥3,2=n−2⎩∞ifn=

10、1,2,ReceivedbytheeditorsSeptember18,2006,and,inrevisedform,June29,2007.2000MathematicsSubjectClassification.Primary35J60,35B40.Keywordsandphrases.NonlinearSchr¨odingerequation,exponentialdecay.c2008AmericanMathematicalSocietyRevertstopublicdomain28yearsfrompublication2565Licens

11、eorcopyrightrestrictionsmayapplytoredistribution;seehttp://www.ams.org/journal-terms-of-use2566ALEXANDERPANKOVand

12、f(x,u)

13、limesssupx∈Rn=0.u→0

14、u

15、LetEdenotetheformdomainoftheoperatorH,i.e.,thedomainofthecorre-spondingquadraticformor,whichisthesame,thedomainoftheoperatorH1/2.Itiswe

16、ll-knownthatE={u∈H1(Rn):(V(x)+c+1)u(x)∈L2(Rn)}0wherec0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。