Positive solutions of SchrOdinger equations and fine regularity of boundary points

Positive solutions of SchrOdinger equations and fine regularity of boundary points

ID:39813380

大小:353.60 KB

页数:23页

时间:2019-07-11

Positive solutions of SchrOdinger equations and fine regularity of boundary points_第1页
Positive solutions of SchrOdinger equations and fine regularity of boundary points_第2页
Positive solutions of SchrOdinger equations and fine regularity of boundary points_第3页
Positive solutions of SchrOdinger equations and fine regularity of boundary points_第4页
Positive solutions of SchrOdinger equations and fine regularity of boundary points_第5页
资源描述:

《Positive solutions of SchrOdinger equations and fine regularity of boundary points》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Math.Z.(2012)272:405427DOI10.1007/s00209-011-0940-5MathematischeZeitschriftPositivesolutionsofSchrödingerequationsandfineregularityofboundarypointsAlanoAnconaReceived:31March2011/Accepted:2August2011/Publishedonline:30September2011©Springer-Verlag2011AbstractGivenaLipschi

2、tzdomaininRNandanonnegativepotentialVinsuchthatV(x)d(x,∂)2isboundedwestudythefineregularityofboundarypointswithrespecttotheSchrödingeroperatorLV:=−Vin.Usingpotentialtheoreticmethods,severalconditionsareshowntobeequivalenttothefineregularityofz∈∂.Themainresultisasimpl

3、e(explicitifissmooth)necessaryandsufficientconditioninvolvingthesizeofVforz∈∂tobefinelyregular.Anintermediateresultconsistsinamajorizationof

4、u

5、2dxforupositiveharmonicinandA⊂.ConditionsforalmosteverywhereAd(.,∂)regularityinasubsetAof∂arealsogivenaswellasanextensionof

6、themainresultstoanotionoffineL1

7、L0-regularity,ifLj=L−Vj,V0,V1beingtwopotentials,withV0≤V1andLasecondorderellipticoperator.MathematicsSubjectClassification(2000)31C35·31C25·35J15·35C151IntroductionandmainresultsThispaperstemsfromaquestionraisedbyMosheMarcusandLaurentVéronse

8、veralyearsagoanditsanswer[7](seetheappendixin[32]andthecommentsafterTheorem4.2below).AnotherindependentandrecentquestionofMosheMarcushasalsomotivatedtheapproachfollowedinSect.3.SeeProposition2.6.BothquestionsdealtwithpositivesolutionsofaSchrödingerequationu−Vu=0inaLipsc

9、hitzdomainwithVinanaturalclassofnonnegativepotentialsin.Thefirstwasaboutanecessaryexplicitconditionforaboundarypointoftobefinelyregularwithrespectto−Vandisrelatedtotheworks[23,24].Thedefinitionoffineregularity[32]recalledbelowgoesbacktoanotionintroducedbyE.B.Dynkintostu

10、dytheboundaryvalues(ortraceson∂)ofpositivesolutionsofnonlinearequationsuchasu=uα,α>1inA.Ancona(B)DépartementdeMathématiques,UniversitéParis-Sud11,91405Orsay,Francee-mail:alano.ancona@math.u-psud.fr123406A.Anconawhichcase,givenasolutionu,Dynkinsdefinitioncorrespondshere

11、toV=

12、u

13、α−1(see[13,16]andthebooks[14,15]).Tostateourmainresultswefixsomenotationsandrecallbasicdefinition

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。