Ill-posedness for nonlinear Schrodinger and wave equations

Ill-posedness for nonlinear Schrodinger and wave equations

ID:39970679

大小:387.63 KB

页数:29页

时间:2019-07-16

Ill-posedness for nonlinear Schrodinger and wave equations_第1页
Ill-posedness for nonlinear Schrodinger and wave equations_第2页
Ill-posedness for nonlinear Schrodinger and wave equations_第3页
Ill-posedness for nonlinear Schrodinger and wave equations_第4页
Ill-posedness for nonlinear Schrodinger and wave equations_第5页
资源描述:

《Ill-posedness for nonlinear Schrodinger and wave equations》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ILL-POSEDNESSFORNONLINEARSCHRODINGERANDWAVEEQUATIONS¨MICHAELCHRIST,JAMESCOLLIANDER,ANDTERENCETAOdAbstract.ThenonlinearwaveandSchr¨odingerequationsonR,withgeneralpowernon-linearityandwithboththefocusinganddefocusingsigns,areprovedtobeill-posedinthesSobolevspaceHwhenevertheexponentsislo

2、werthanthatpredictedbyscalingorGalileaninvariances,orwhentheregularityistoolowtosupportdistributionalsolutions.Thisextendspreviouswork[7]oftheauthors,whichtreatedtheone-dimensionalcubicnonlinearSchr¨odingerequation.Inthedefocusingcasesolitonorblowupexamplesareunavailable,andaproofofil

3、l-posednessrequirestheconstructionofothersolutions.In[7]thiswasachievedusingcertainlong-timeasymptoticbehaviorwhichoccursonlyforlowpowernonlinearities.Hereweanalyzeinsteadaclassofsolutionsforwhichthezero-dispersionlimitprovidesagoodapproximation.Themethodisrathergeneralandshouldbeappl

4、icabletowiderclassesofnonlinearequations.1.IntroductionThispaperisconcernedwiththelowregularitybehavior(andinparticularill-posedness)oftheCauchyproblemforthegeneralizednonlinearSchr¨odingerequation(−iu(t,x)+∆u(t,x)=ω

5、u

6、p−1u(t,x)tx(gNLS)u(0,x)=u(x)∈Hs(Rd)0andthe(complex)nonlinearwaveeq

7、uationu(t,x)=ω

8、u

9、p−1u(t,x)(gNLW)u(0,x)=u(x)∈Hs(Rd)0s−1d∂tu(0,x)=u1(x)∈H(R)inRd,whereω=±1andp>1,andu:R×Rd→Cisacomplex-valuedfield.Here∆xdenotesarXiv:math/0311048v1[math.AP]4Nov2003P∂22theLaplacian∆x:=j∂x2,while2:=−∂t+∆xisthed’Alembertian.Thesignω=+1isjreferredtoasthedefocusingca

10、se,whilethesignω=−1isfocusing.WesaythattheNLSequation(gNLS)islocallywell-posedinHsifforeveryu0∈HstheredexistatimeT=T(ku0kHs)>0anda(distributional)solutionu:[−T,T]×R→Cto(gNLS)whichisinthespaceC0([−T,T];Hxs),andsuchthatthesolutionmapu07→uisuniformlycontinuous1fromHstoC0([−T,T];Hs).Furth

11、ermore,thereisanadditionalspaceXinwhichxDate:August13,2003.1991MathematicsSubjectClassification.35Q55,35L15.Keywordsandphrases.zero-dispersionlimit,ill-posedness,NLW-typeequations,NLS-typeequations.M.C.issupportedinpartbyN.S.F.grantDMS9970660.J.C.issupportedinpartbyN.S.F.grantDMS010059

12、5,N.S

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。