mixed finite element in 3d in hdiv and Hcurl Nedelec 1986

mixed finite element in 3d in hdiv and Hcurl Nedelec 1986

ID:40085378

大小:135.15 KB

页数:5页

时间:2019-07-20

mixed finite element in 3d in hdiv and Hcurl Nedelec 1986_第1页
mixed finite element in 3d in hdiv and Hcurl Nedelec 1986_第2页
mixed finite element in 3d in hdiv and Hcurl Nedelec 1986_第3页
mixed finite element in 3d in hdiv and Hcurl Nedelec 1986_第4页
mixed finite element in 3d in hdiv and Hcurl Nedelec 1986_第5页
资源描述:

《mixed finite element in 3d in hdiv and Hcurl Nedelec 1986》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MIXEDFINITEELEMENTIN3DINH(div)ANDH(curl)J.C,NEDELECEcolePolytechnique,CentredeMathdmatiquesAppliqudes91128Palai~eau,FranceI.INTRODUCTION.FrayesDeVenbekefirstintroducethemixedfiniteelement.ThenP.A.RaviartandJ,M.Thomasdoessomemathematicsontheseelementin2Dandothersdoalso:F.Br

2、ezziV.Babuska...In1980weintroduceafamilyofsomemixedfiniteelementin3DandweusethemforsolvingNavierStokesequations.In1984F,Brezzi,J.DouglassandL.D.Mariniintroducein2DanewfamilyofmixedfiniteelementconforminginH(div).ThatpaperwasthestartingpointforbuildingnewfamiliesOffiniteele

3、mentin3D,II.FINITEELEMENTINH(div).Notations.Kisatetrahedron~KitsboundarynthenormalfafacewhichareaisId2fraisanedgewhichlenghtisJ~dscurlu=V^uu=(ul,u2,u3)H(curl)={uEL2(~))3;curluE(L2(~))3}div=V.uH(div)={uE(L2(~))3;divu@L2(~)}Spacesofpolynomials.Pk=polynomialsofdegreelessorequ

4、altok~k="homogeneousofdegreekx!Dk=(Pk_l)3+PNk_lrr=x2Ix3Sk={pE(pk);(r.p)~0}=(Pk_

5、)3~Sk322dimSk=k(k+2)dim~k=(k+3)(k2+I)k=(k+3)(k+2)kdimk2WearenowabletointroducethefiniteelementconforminginH(div).Definition.WedefinethefiniteelementbyI)Kisatetrahedron2)P=(Pk)3isaspaceofpolynom

6、ials3)Thesetofdegreesoffreedomwhichare(3.1)(p.n)qdy;VqEpk(f);f(3.2)jf(p.q)dx;VqE~k-1KwehavetheTheorem.TheabovefiniteelementisunisolventandconforminginH(div).Theassociatein-terpolationoperatorHissuchthatdiv~p=9"divp;VpEH(div),where~*istheL2projectiononPk-1"Whenk=I,thecorres

7、pondingelementhasnointeriormomentsand12degreesoffree-dom.Itsdivergenceisconstant.Proposition.Foratetrahedron"regularenough"whichdiameterisk,wehaveIIp-~pN(L2(K))3

8、initeelementissaidtobeconforminginafunctionalspaceiftheinterpolateofanelementofthisspacebelongtothisspace.Inourcase,theconformityinH(div)isequivalenttothecontinuityofthenormalcomposentateachinterface.Thispropertyisclearlytrueforourfiniteele-mentsincetheunknownsonthefaceare

9、I(p.n)qdy;VqEPk(f)fandp.nisalsoPk(f).323III.FINITEELEMENTINH(curl).Afiniteelementisconfor

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。