Mixed Finitc Elements in R3 Nedelec 1980

Mixed Finitc Elements in R3 Nedelec 1980

ID:40085374

大小:804.08 KB

页数:27页

时间:2019-07-20

Mixed Finitc Elements in R3 Nedelec 1980_第1页
Mixed Finitc Elements in R3 Nedelec 1980_第2页
Mixed Finitc Elements in R3 Nedelec 1980_第3页
Mixed Finitc Elements in R3 Nedelec 1980_第4页
Mixed Finitc Elements in R3 Nedelec 1980_第5页
资源描述:

《Mixed Finitc Elements in R3 Nedelec 1980》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Numer.Math.35,315-341(1980)NumerischeMathemaUk9bySpringer-Verlag1980MixedFinitcElementsinIR3J.C.NedelecCentredeMath6matiquesAppliqu+es-EcolePolytechnique,91128PalaiseauCedex,FranceSummary.WepresentheresomenewfamiliesofnonconformingfiniteelementsinIR3.Thesetwofamiliesoffini

2、teelements,builtontetrahedronsoroncubesarerespectivelyconforminginthespacesH(curl)andH(div).WegivesomeapplicationsoftheseelementsfortheapproximationofMaxwell'sequationsandequationsofelasticity.SubjectClassifications:AMS(MOS):65N30,CR:5.17.First,weintroducesomenotations:Kisa

3、tetrahedronoracube,thevolumeofwhichis.[dx;K~Kisitsboundary;fisafaceofK,thesurfaceofwhichis~dy;faisanedge,thelengthofwhichis~ds;LZ(K)istheusualHilbertspaceofsquareintegrablefunctionsdefinedonK;Hm(K)={qSELZ(K);O'O~L2(K);tc~l

4、=VAu,(definedbyusingthedistributionalderivative)forU=(Ul,U2,U3);uieLZ(K);H(curl)={u~(Lz(K))3;curlue(U(K))3};divu=F-u;H(div)={ue(U(K))3;divueL2(K)};Dkuisthek-thdifferentialoperatorassociatedtou,whichisa(k+1)-multilinearoperatoractingon]R3;kisanindex;isthelinearspaceofpolynom

5、ials,thedegreeofwhichislessorequaltok;isthegroupofallpermutationsoftheset{1,2....,k};Corc~willstandforanyconstantdependingpossiblyon~.1.StudyoftheFiniteElementsBuiltonTetrahedrons1.1SomeSpaceofPolynomialsonIR"Weintroduceheresomelinearspacesofpolynomialswhichwillbeusedlatert

6、obuildtheconformingfiniteelementsinH(curl)orinH(div).WeconsiderherethecaseofIR"thoughhereafterwewillonlyusen=2andn=3.0029-599X/80/0035/0315/$05.40316J.C.NedelecDefinition1.Forue(Ck(IR"))",ekuisthek+1multi-linearformobtainedfromDRubythefollowingsymmetrization:V~1,~2.....~k,~

7、k+1elR",1eku(~l,~2.....~k,~k+l)=~,(k+l)!Dku(~oo).....~(k),~(k+l))"(1)~rEak+1Remark.Whenk=1,euisthefollowingbilinearsymmetricform:1[OuiOujeuisthestraintensorofelasticitywhenn=3. 9Letusproveapropertyoftheoperatoreku.Letet,...,e,bethebasisinIR".WehaveLemma1.Forc~=(cq.....~,),

8、amulti-index,]c~]=k+1,wehave0k+r~~t-times~zz-l-timesaj+i-timescry-times]luJ--[~iT-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。