欢迎来到天天文库
浏览记录
ID:40085374
大小:804.08 KB
页数:27页
时间:2019-07-20
《Mixed Finitc Elements in R3 Nedelec 1980》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Numer.Math.35,315-341(1980)NumerischeMathemaUk9bySpringer-Verlag1980MixedFinitcElementsinIR3J.C.NedelecCentredeMath6matiquesAppliqu+es-EcolePolytechnique,91128PalaiseauCedex,FranceSummary.WepresentheresomenewfamiliesofnonconformingfiniteelementsinIR3.Thesetwofamiliesoffini
2、teelements,builtontetrahedronsoroncubesarerespectivelyconforminginthespacesH(curl)andH(div).WegivesomeapplicationsoftheseelementsfortheapproximationofMaxwell'sequationsandequationsofelasticity.SubjectClassifications:AMS(MOS):65N30,CR:5.17.First,weintroducesomenotations:Kisa
3、tetrahedronoracube,thevolumeofwhichis.[dx;K~Kisitsboundary;fisafaceofK,thesurfaceofwhichis~dy;faisanedge,thelengthofwhichis~ds;LZ(K)istheusualHilbertspaceofsquareintegrablefunctionsdefinedonK;Hm(K)={qSELZ(K);O'O~L2(K);tc~l4、=VAu,(definedbyusingthedistributionalderivative)forU=(Ul,U2,U3);uieLZ(K);H(curl)={u~(Lz(K))3;curlue(U(K))3};divu=F-u;H(div)={ue(U(K))3;divueL2(K)};Dkuisthek-thdifferentialoperatorassociatedtou,whichisa(k+1)-multilinearoperatoractingon]R3;kisanindex;isthelinearspaceofpolynom5、ials,thedegreeofwhichislessorequaltok;isthegroupofallpermutationsoftheset{1,2....,k};Corc~willstandforanyconstantdependingpossiblyon~.1.StudyoftheFiniteElementsBuiltonTetrahedrons1.1SomeSpaceofPolynomialsonIR"Weintroduceheresomelinearspacesofpolynomialswhichwillbeusedlatert6、obuildtheconformingfiniteelementsinH(curl)orinH(div).WeconsiderherethecaseofIR"thoughhereafterwewillonlyusen=2andn=3.0029-599X/80/0035/0315/$05.40316J.C.NedelecDefinition1.Forue(Ck(IR"))",ekuisthek+1multi-linearformobtainedfromDRubythefollowingsymmetrization:V~1,~2.....~k,~7、k+1elR",1eku(~l,~2.....~k,~k+l)=~,(k+l)!Dku(~oo).....~(k),~(k+l))"(1)~rEak+1Remark.Whenk=1,euisthefollowingbilinearsymmetricform:1[OuiOujeuisthestraintensorofelasticitywhenn=3.9Letusproveapropertyoftheoperatoreku.Letet,...,e,bethebasisinIR".WehaveLemma1.Forc~=(cq.....~,),8、amulti-index,]c~]=k+1,wehave0k+r~~t-times~zz-l-timesaj+i-timescry-times]luJ--[~iT-
4、=VAu,(definedbyusingthedistributionalderivative)forU=(Ul,U2,U3);uieLZ(K);H(curl)={u~(Lz(K))3;curlue(U(K))3};divu=F-u;H(div)={ue(U(K))3;divueL2(K)};Dkuisthek-thdifferentialoperatorassociatedtou,whichisa(k+1)-multilinearoperatoractingon]R3;kisanindex;isthelinearspaceofpolynom
5、ials,thedegreeofwhichislessorequaltok;isthegroupofallpermutationsoftheset{1,2....,k};Corc~willstandforanyconstantdependingpossiblyon~.1.StudyoftheFiniteElementsBuiltonTetrahedrons1.1SomeSpaceofPolynomialsonIR"Weintroduceheresomelinearspacesofpolynomialswhichwillbeusedlatert
6、obuildtheconformingfiniteelementsinH(curl)orinH(div).WeconsiderherethecaseofIR"thoughhereafterwewillonlyusen=2andn=3.0029-599X/80/0035/0315/$05.40316J.C.NedelecDefinition1.Forue(Ck(IR"))",ekuisthek+1multi-linearformobtainedfromDRubythefollowingsymmetrization:V~1,~2.....~k,~
7、k+1elR",1eku(~l,~2.....~k,~k+l)=~,(k+l)!Dku(~oo).....~(k),~(k+l))"(1)~rEak+1Remark.Whenk=1,euisthefollowingbilinearsymmetricform:1[OuiOujeuisthestraintensorofelasticitywhenn=3.9Letusproveapropertyoftheoperatoreku.Letet,...,e,bethebasisinIR".WehaveLemma1.Forc~=(cq.....~,),
8、amulti-index,]c~]=k+1,wehave0k+r~~t-times~zz-l-timesaj+i-timescry-times]luJ--[~iT-
此文档下载收益归作者所有