A mixed finite element method for 2nd order elliptic problems.

A mixed finite element method for 2nd order elliptic problems.

ID:37239238

大小:792.25 KB

页数:24页

时间:2019-05-20

A mixed finite element method for 2nd order elliptic problems._第1页
A mixed finite element method for 2nd order elliptic problems._第2页
A mixed finite element method for 2nd order elliptic problems._第3页
A mixed finite element method for 2nd order elliptic problems._第4页
A mixed finite element method for 2nd order elliptic problems._第5页
资源描述:

《A mixed finite element method for 2nd order elliptic problems.》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、AMIXEDFINITEELEMENT~,~THODFOR2~ndORDERELLIPTICPROBLEMSP.A.RaviartandJ.M°ThomasI.INTRODUCTIONLet~beaboundedopensubsetofRnwithaLipshitzcontinuousboundaryF.Weconsiderthe2ndorderellipticmodelproblem-Au=fin~,(I.I)Iu=0ohF,wherefisagivenfunctionofthespaceL2(~).Avar

2、iationalformofproblem(1.1),knownasthecomplementaryenergyprinciple,consistsinfindingp=graduwhichminimizesthecomplementaryenergyfuncti2nal(1.2)~(q)~=yI~I~dxnovertheaffinemanifoldWofvector-valuedfunctions~@(L2(~))n%whichsatisfytheequilibriumequation(1.3)div~+f=

3、0in~.TheuseofcomplementaryenergyprincipleforconstructingfiniteelementdiscretizationsofellipticproblemshasbeenfirstadvocatedbyFraeijsdeVeubeke[51,[6],

4、7].Theso-calledequilibriummethodconsistsfirstinconstructingafinite-dimensionalsubmanifold~hofW~andtheninfind

5、ing~h6~hwhichminimizesthecomplementaryenergyfunctionalI(q)overtheaffinemanifold%~h.For2ndorderellipticproblems,thenumericalanalysisoftheequilibriummethodhasbeenCentredeMath~matiquesAppliqu~es,EcolePolytechniqueandUnive~sit~deParisVI.~Universit~deParisVI.293m

6、adebyThomas[19],[20].Now,wenotethatthepracticalconstructionofthesubmanifold~hisnotingeneralasimpleptoblemsinceitrequiresasearchforexplicitsolutionsoftheequilibriumequation(1.3)inthewholedomain~.Inordertoavoidtheabovedifficulty,wecanuseamoregeneralvariational

7、principle,knowninelasticitytheoryastheHellinger-Reissnerprinciple,inwhichtheconstraint(1.3)hasbeenremovedattheexpensehoweverofintroducingaLagrangemultiplier.Thispaperwillbedevotedtothestudyofafiniteelementmethodbasedonthisvariationalprinciple.Infact,thisso-c

8、alledmixedmethodhasbeenfoundveryusefulinsomepracticalproblemsandreferto[17]foranapplicationtothenumericalsolutionofanonlinearproblemofradi~tivetransfer.Forsomegeneralresultsconcerningmixedmethods,werefertoOden[12],[13],Oden&Reddy[14],Reddy[16].Mixedmethodsfo

9、rsolving4thorderellipticequationshavebeenparticularlyanalyzed:seeBrezzi&Raviart[2],Ciarlet&Raviart[4],Johnson[9],[I0],andMiyoshi[11].ForrelatedresultswereferalsotoHaslinger&Hl~vacek[8].Anoutline

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。