Maximum margin multi-instance learning_NIPS2011

Maximum margin multi-instance learning_NIPS2011

ID:40084773

大小:291.46 KB

页数:9页

时间:2019-07-20

Maximum margin multi-instance learning_NIPS2011_第1页
Maximum margin multi-instance learning_NIPS2011_第2页
Maximum margin multi-instance learning_NIPS2011_第3页
Maximum margin multi-instance learning_NIPS2011_第4页
Maximum margin multi-instance learning_NIPS2011_第5页
资源描述:

《Maximum margin multi-instance learning_NIPS2011》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MaximumMarginMulti-InstanceLearningHuaWangHengHuangComputerScienceandEngineeringComputerScienceandEngineeringUniversityofTexasatArlingtonUniversityofTexasatArlingtonhuawangcs@gmail.comheng@uta.eduFarhadKamangarFeipingNieComputerScienceandEngineeringComputerScienc

2、eandEngineeringUniversityofTexasatArlingtonUniversityofTexasatArlingtonkamangar@uta.edufeipingnie@gmail.comChrisDingComputerScienceandEngineeringUniversityofTexasatArlingtonchqding@uta.eduAbstractMulti-instancelearning(MIL)considersinputasbagsofinstances,inwhichl

3、a-belsareassignedtothebags.MILisusefulinmanyreal-worldapplications.Forexample,inimagecategorizationsemanticmeanings(labels)ofanimagemostlyarisefromitsregions(instances)insteadoftheentireimage(bag).ExistingMILmethodstypicallybuildtheirmodelsusingtheBag-to-Bag(B2B)

4、distance,whichareoftencomputationallyexpensiveandmaynottrulyreflectthesemanticsim-ilarities.Totacklethis,inthispaperweapproachMILproblemsfromanewperspectiveusingtheClass-to-Bag(C2B)distance,whichdirectlyassessestherelationshipsbetweentheclassesandthebags.Takingint

5、oaccountthetwoma-jorchallengesinMIL,highheterogeneityondataandweaklabelassociation,weproposeanovelMaximumMarginMulti-InstanceLearning(M3I)approachtoparameterizetheC2Bdistancebyintroducingtheclassspecificdistancemetricsandthelocallyadaptivesignificancecoefficients.We

6、applyournewapproachtotheautomaticimagecategorizationtasksonthree(onesingle-labelandtwomulti-label)benchmarkdatasets.Extensiveexperimentshavedemonstratedpromisingresultsthatvalidatetheproposedmethod.1IntroductionTraditionalimagecategorizationmethodsusuallyconsider

7、animageasoneindiscreteentity,which,however,neglectsanimportantfactthatthesemanticmeanings(labels)ofanimagemostlyarisefromitsconstituentregions,butnottheentireimage.Forexample,thelabels“person”and“car”associatedwiththequeryimageinFigure1areonlycharacterizedbythere

8、gionsintwoboundingboxes,respectively,ratherthanthewholeimage.Therefore,modelingtherelationshipsbetweenla-belsandregions(insteadoftheentireimage)couldpotentiall

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。