欢迎来到天天文库
浏览记录
ID:40084773
大小:291.46 KB
页数:9页
时间:2019-07-20
《Maximum margin multi-instance learning_NIPS2011》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、MaximumMarginMulti-InstanceLearningHuaWangHengHuangComputerScienceandEngineeringComputerScienceandEngineeringUniversityofTexasatArlingtonUniversityofTexasatArlingtonhuawangcs@gmail.comheng@uta.eduFarhadKamangarFeipingNieComputerScienceandEngineeringComputerScienc
2、eandEngineeringUniversityofTexasatArlingtonUniversityofTexasatArlingtonkamangar@uta.edufeipingnie@gmail.comChrisDingComputerScienceandEngineeringUniversityofTexasatArlingtonchqding@uta.eduAbstractMulti-instancelearning(MIL)considersinputasbagsofinstances,inwhichl
3、a-belsareassignedtothebags.MILisusefulinmanyreal-worldapplications.Forexample,inimagecategorizationsemanticmeanings(labels)ofanimagemostlyarisefromitsregions(instances)insteadoftheentireimage(bag).ExistingMILmethodstypicallybuildtheirmodelsusingtheBag-to-Bag(B2B)
4、distance,whichareoftencomputationallyexpensiveandmaynottrulyreflectthesemanticsim-ilarities.Totacklethis,inthispaperweapproachMILproblemsfromanewperspectiveusingtheClass-to-Bag(C2B)distance,whichdirectlyassessestherelationshipsbetweentheclassesandthebags.Takingint
5、oaccountthetwoma-jorchallengesinMIL,highheterogeneityondataandweaklabelassociation,weproposeanovelMaximumMarginMulti-InstanceLearning(M3I)approachtoparameterizetheC2Bdistancebyintroducingtheclassspecificdistancemetricsandthelocallyadaptivesignificancecoefficients.We
6、applyournewapproachtotheautomaticimagecategorizationtasksonthree(onesingle-labelandtwomulti-label)benchmarkdatasets.Extensiveexperimentshavedemonstratedpromisingresultsthatvalidatetheproposedmethod.1IntroductionTraditionalimagecategorizationmethodsusuallyconsider
7、animageasoneindiscreteentity,which,however,neglectsanimportantfactthatthesemanticmeanings(labels)ofanimagemostlyarisefromitsconstituentregions,butnottheentireimage.Forexample,thelabels“person”and“car”associatedwiththequeryimageinFigure1areonlycharacterizedbythere
8、gionsintwoboundingboxes,respectively,ratherthanthewholeimage.Therefore,modelingtherelationshipsbetweenla-belsandregions(insteadoftheentireimage)couldpotentiall
此文档下载收益归作者所有