Advances in Large Margin Classifiers

ID:40373639

大小:4.22 MB

页数:423页

时间:2019-08-01

Advances in Large Margin Classifiers_第1页
Advances in Large Margin Classifiers_第2页
Advances in Large Margin Classifiers_第3页
Advances in Large Margin Classifiers_第4页
Advances in Large Margin Classifiers_第5页
资源描述:

《Advances in Large Margin Classifiers》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、OFRELATEDINTERESTAdvancesinKernelMethodsSupportVectorLearningADVANCESINLARGEMARGINCLASSIFIERSeditedbyBernhardSchölkopf,ChristopherJ.C.Burges,andAlexanderJ.SmolaADVANCESINTheSupportVectorMachineisapowerfulnewlearningalgorithmforsolvingaADVANCESINLARGEMARGINvarietyoflearningan

2、dfunctionestimationproblems,suchaspatternrecognition,regressionestimation,andoperatorinversion.CLASSIFIERSTheimpetusforthiscollectionwasaworkshoponSupportSMOLALARGEMARGINVectorMachinesheldatthe1997NIPSconference.TheeditedbyAlexanderJ.Smola,PeterJ.Bartlett,contributors,bothun

3、iversityresearchersandengineersBernhardSchölkopf,andDaleSchuurmansdevelopingapplicationsforthecorporateworld,.CLASSIFIERSTheconceptoflargemarginsisaunifyingprincipleformaWho’sWhoofthisexcitingnewarea.BARTLETTfortheanalysisofmanydifferentapproachestotheclassificationofdatafro

4、mexamples,includingboost-ing,mathematicalprogramming,neuralnetworks,andsupportvectormachines.Thefactthatitisthemargin,orconfidencelevel,ofaclassification—that.is,ascaleparameter—ratherthanarawtraininger-SCHÖLKOPFrorthatmattershasbecomeakeytoolfordealingwithclassifiers.Thisbo

5、okshowshowthisideaap-pliestoboththetheoreticalanalysisandthedesignofalgorithms.Thebookprovidesanoverviewofrecentdevelop-.mentsinlargemarginclassifiers,examinesconnec-SCHUURMANStionswithothermethods(e.g.,Bayesianinference),andidentifiesstrengthsandweaknessesofthemethod,aswell

6、asdirectionsforfutureresearch.AmongthecontributorsareManfredOpper,PulsedNeuralNetworksEDITEDBYVladimirVapnik,andGraceWahba.editedbyWolfgangMaassandChristopherM.BishopMostpracticalapplicationsofartificialneuralnetworksarebasedonaALEXANDERJ.SMOLAAlexanderJ.Smolaisaresearcherin

7、theDepart-computationalmodelinvolvingthepropagationofcontinuousvari-ablesfromoneprocessingunittothenext.Inrecentyears,dataEDITORSPETERL.BARTLETTmentofEngineeringandRSISE,AustralianNationalUniversity.PeterL.BartlettisSeniorFellow,Com-fromneurobiologicalexperimentshavemadeitin

8、creasinglyBERNHARDSCHÖLKOPFputerSciencesLaboratory,AustralianNationalUni-cl

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《Advances in Large Margin Classifiers》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、OFRELATEDINTERESTAdvancesinKernelMethodsSupportVectorLearningADVANCESINLARGEMARGINCLASSIFIERSeditedbyBernhardSchölkopf,ChristopherJ.C.Burges,andAlexanderJ.SmolaADVANCESINTheSupportVectorMachineisapowerfulnewlearningalgorithmforsolvingaADVANCESINLARGEMARGINvarietyoflearningan

2、dfunctionestimationproblems,suchaspatternrecognition,regressionestimation,andoperatorinversion.CLASSIFIERSTheimpetusforthiscollectionwasaworkshoponSupportSMOLALARGEMARGINVectorMachinesheldatthe1997NIPSconference.TheeditedbyAlexanderJ.Smola,PeterJ.Bartlett,contributors,bothun

3、iversityresearchersandengineersBernhardSchölkopf,andDaleSchuurmansdevelopingapplicationsforthecorporateworld,.CLASSIFIERSTheconceptoflargemarginsisaunifyingprincipleformaWho’sWhoofthisexcitingnewarea.BARTLETTfortheanalysisofmanydifferentapproachestotheclassificationofdatafro

4、mexamples,includingboost-ing,mathematicalprogramming,neuralnetworks,andsupportvectormachines.Thefactthatitisthemargin,orconfidencelevel,ofaclassification—that.is,ascaleparameter—ratherthanarawtraininger-SCHÖLKOPFrorthatmattershasbecomeakeytoolfordealingwithclassifiers.Thisbo

5、okshowshowthisideaap-pliestoboththetheoreticalanalysisandthedesignofalgorithms.Thebookprovidesanoverviewofrecentdevelop-.mentsinlargemarginclassifiers,examinesconnec-SCHUURMANStionswithothermethods(e.g.,Bayesianinference),andidentifiesstrengthsandweaknessesofthemethod,aswell

6、asdirectionsforfutureresearch.AmongthecontributorsareManfredOpper,PulsedNeuralNetworksEDITEDBYVladimirVapnik,andGraceWahba.editedbyWolfgangMaassandChristopherM.BishopMostpracticalapplicationsofartificialneuralnetworksarebasedonaALEXANDERJ.SMOLAAlexanderJ.Smolaisaresearcherin

7、theDepart-computationalmodelinvolvingthepropagationofcontinuousvari-ablesfromoneprocessingunittothenext.Inrecentyears,dataEDITORSPETERL.BARTLETTmentofEngineeringandRSISE,AustralianNationalUniversity.PeterL.BartlettisSeniorFellow,Com-fromneurobiologicalexperimentshavemadeitin

8、creasinglyBERNHARDSCHÖLKOPFputerSciencesLaboratory,AustralianNationalUni-cl

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭