lec10_Potential energy and conservation of energy(2)
lec10_Potential energy and conservation of energy(2)
ID:40083155
大小:2.08 MB
页数:18页
时间:2019-07-20
资源描述:
《lec10_Potential energy and conservation of energy(2)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Physics I Class 10PotentialEnergyandConservationofEnergy•Work integral •Conserva0ve & non‐conserva0ve forces •Poten0al energy U Gravita0onal Elas0c (ideal spring) •Conserva0on of mechanical energy Example 1Work (Review) 2Work (Review) 3Work Integral
2、 in Mul0ple Dimensions4Conserva3ve Forces 5Examples 6Work‐Energy Theorem Since conserva0ve work integrals are easy to calculate, let’s separate those in the work‐energy theorem: Here Wis the work done by all conserva0ve forces when consvthe object mov
3、es from the ini0al posi0on to the final posi0on. • Nothing on the r.h.s. depends on the path the object follows! • Time does not appear anywhere!7Poten0al Energy UW=(K−K)−WnonfinalinitialconsvWe can make this easier to remember by defining the pot
4、en0al energy func0on, U, for the conserva0ve force. Since the work integral is independent of the path, we choose a straight line: fNoticetheΔU≡−∫F⋅dxnegativesigniNow the work‐energy theorem reads: W=(K−K)+(U−U)nonfifi8Poten0al Energy (con0nued) F
5、eatures of Poten0al Energy: • Scalar • Arbitrary zero • For known F, we can calculate U once con and use it in many different problems. 9Examples of Poten0al Energy GravitationalPotentialEnergy:yyU=−∫(−mg)dy'=mghgrav0ie.picky=0for
6、convenienceiXIdealSpring:x012U=−∫(−kx')dx'=kxspring20-Xie.pickx=0atequilibri10umiConserva0on of Energy 0=(K−K)+(U−U)fifiMechanicalEnergy=K+U=constant0=ΔK+ΔUorΔK=-ΔUorK–K=-(U–U)orK+U=K+UfififfiiLater we will see how to retain this principle of physics
7、by cataloging other forms of energy. 11Ex: Solve distance an object roles up a ramp 12Take‐Away Concepts 13Problems of the Day Amarblewithmass5gisplacedonaverticalspringthathasbeencompressed5cmfromitsequilibriumposition.Thespringconstantis196N/m.Negl