Bell _ Basic Set Theory

Bell _ Basic Set Theory

ID:40049534

大小:288.00 KB

页数:27页

时间:2019-07-18

Bell _ Basic Set Theory_第1页
Bell _ Basic Set Theory_第2页
Bell _ Basic Set Theory_第3页
Bell _ Basic Set Theory_第4页
Bell _ Basic Set Theory_第5页
资源描述:

《Bell _ Basic Set Theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BasicSetTheoryJohnL.BellI.SetsandClasses.Wedistinguishbetweenobjectsandclasses.Anycollectionofobjectsisdeemedtoformaclasswhichisuniquelydeterminedbyitselements.Wewritea∈AtoindicatethattheobjectaisanelementormemberoftheclassA.Weassumethateverymemberofaclassisanobject.Lower-caselettersa,b,c,x,y,z,…wil

2、lalwaysdenoteobjects,andlater,sets.EqualitybetweenclassesisgovernedbytheAxiomofExtensionality:AxiomA=B⇔∀x[x∈A⇔x∈B].Oneclassissaidtobeasubclassofanotherifeveryelementofthefirstisanelementofthesecond.Thisrelationbetweenclassesisdenotedbythesymbol⊆.ThuswemaketheDefinitionA⊆B⇔∀x[x∈A⇒x∈B].AsubclassBofacl

3、assAsuchthatB≠AiscalledapropersubclassofA.Everypropertyofobjectsdeterminesaclass.Supposeϕ(x)isthegivenpropertyofobjectsx;theclassdeterminedbythispropertyisdenotedby{x:ϕ(x)},whichwereadastheclassofallxsuchthatϕ(x).Church’sschemeisanaxiomguaranteeingthattheclassnamedinthiswaybehavesinthemannerexpected

4、:Axiom∀y[y∈{x:ϕ(x)}⇔ϕ(y)].AmongclasseswesingleouttheuniversalclassVcomprisingallobjectsandtheemptyclass∅whichhasnomembers.ThuswemaketheDefinitionV={x:x=x}∅={x:x≠x}.2Weshallsometimeswrite0for∅.Asetisaclasswhichisalsoanobject.Thepurposeofatheoryofsetsistoformulateexistenceprincipleswhichensuretheprese

5、nceofsufficientlymanysetstoenablemathematicstobedone.Russell’sParadoxshowsthatnoteveryclasscanbeaset.Forconsidertheclass{x:x∉x}=R(herex∉xstandsfor“notx∈x”).Supposethisclasswereasetr.ThenitfollowsfromChurch’sschemethatr∈r⇔r∉r,acontradiction.ThereforeRisnotaset.Inthepresentformulationofthetheoryofsets

6、wequantifyonlyoverobjects,andnotoverclassesingeneral.Wedo,ontheotherhand,namemanyclassesandstateprincipleswhichapplytoallclasses.Definitions{a}=df{x:x=a}{a1,…,an}=df{x:x=a1∨…∨x=an}∀x∈Aϕ(x)⇔df∀x[x∈A⇒ϕ(x)]∃x∈Aϕ(x)⇔df∃x[x∈A∧ϕ(x)]{x∈A:ϕ(x)}=df{x:x∈A∧ϕ(x)}x,y,…,z∈A⇔dfx∈A∧y∈A∧…∧z∈Aa1∈a2∈…∈an⇔dfa1∈a2∧…∧an-

7、1∈anA∪B=df{x:x∈A∨x∈B}A∩B=df{x:x∈A∧x∈B}–A=df{x:x∉A}A–B=df{x:x∈A∨x∈B}Noticethat∪,∩and–satisfythefollowinglawsofBooleanalgebraA∪B=B∪A,A∩B=B∩A;A∪A=A,A∩A=A;(A∪B)∩B=B,(A∩B)∪B=BA∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。