欢迎来到天天文库
浏览记录
ID:40879025
大小:405.51 KB
页数:119页
时间:2019-08-09
《An_introduction_to_Set_Theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ANINTRODUCTIONTOSETTHEORYProfessorWilliamA.R.WeissOctober2,20082Contents0Introduction71LOST112FOUND193TheAxiomsofSetTheory234TheNaturalNumbers315TheOrdinalNumbers416RelationsandOrderings537Cardinality598ThereIsNothingRealAboutTheRealNumbers659TheUniverse7334CONT
2、ENTS10Reflection7911ElementarySubmodels8912Constructibility10113Appendices117.1TheAxiomsofZFC........................117.2TentativeAxioms.........................118CONTENTS5PrefaceThesenotesforagraduatecourseinsettheoryareontheirwaytobe-comingabook.Theyoriginate
3、dashandwrittennotesinacourseattheUniversityofTorontogivenbyProf.WilliamWeiss.CynthiaChurchpro-ducedthefirstelectroniccopyinDecember2002.JamesTalmageAdamsproducedthecopyhereinFebruary2005.Chapters1to9areclosetofi-nalform.Chapters10,11,and12arequitereadable,butshoul
4、dnotbeconsideredasafinaldraft.Onemorechapterwillbeadded.6CONTENTSChapter0IntroductionSetTheoryisthetruestudyofinfinity.Thisaloneassuresthesubjectofaplaceprominentinhumanculture.Butevenmore,SetTheoryisthemilieuinwhichmathematicstakesplacetoday.Assuch,itisexpectedto
5、provideafirmfoundationfortherestofmathematics.Anditdoes—uptoapoint;wewillprovetheoremssheddinglightonthisissue.BecausethefundamentalsofSetTheoryareknowntoallmathemati-cians,basicproblemsinthesubjectseemelementary.Herearethreesimplestatementsaboutsetsandfunctions.
6、Theylookliketheycouldappearonahomeworkassignmentinanundergraduatecourse.1.ForanytwosetsXandY,eitherthereisaone-to-onefunctionfromXintoYoraone-to-onefunctionfromYintoX.2.Ifthereisaone-to-onefunctionfromXintoYandalsoaone-to-onefunctionfromYintoX,thenthereisaone-to
7、-onefunctionfromXontoY.3.IfXisasubsetoftherealnumbers,theneitherthereisaone-to-onefunctionfromthesetofrealnumbersintoXorthereisaone-to-onefunctionfromXintothesetofrationalnumbers.Theywon’tappearonanassignment,however,becausetheyarequitedif-78CHAPTER0.INTRODUCTIO
8、Nficulttoprove.Statement(2)istrue;itiscalledtheSchroder-BernsteinTheorem.Theproof,ifyouhaven’tseenitbefore,isquitetrickybutnever-thelessusesonlystandardideasfromthenin
此文档下载收益归作者所有
点击更多查看相关文章~~