basic set theory

basic set theory

ID:3913681

大小:189.47 KB

页数:12页

时间:2017-11-25

basic set theory_第1页
basic set theory_第2页
basic set theory_第3页
basic set theory_第4页
basic set theory_第5页
资源描述:

《basic set theory》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、BasicSetTheoryDanielMurfetMay16,2006ThroughoutweworkwiththefoundationprovidedbystandardZFC(FCT,Section3).Inparticularwedonotassumeweareworkinginsideanyfixedgrothendieckuniverse.Itseemstomethatsomebasicproofsaboutordinalsinstandardreferencesareflawed,sosincetheendresultisthesameweadoptaslightlydiffere

2、ntdefinitiontomakelifeeasier.Contents1OrdinalNumbers12TransfinitePain43CardinalNumbers74CardinalOperations105RegularCardinals111OrdinalNumbersDefinition1.Givenasetx,weletx+denotethesetx∪{x}.Definition2.Asetxistransitiveifwhenevery∈xwehavey⊆x.Asetxisurtransitiveifitistransitive,andifinadditionwhenevera

3、propersubsety⊂xistransitivewehavey∈x.Wesayxisanordinalifitisurtransitive,andifeveryelementofxisurtransitive.Wetendtouselowercasegreeklettersα,β,γ,...torepresentordinals.Givenordinalsα,βwewriteα≺βforα∈β.Onechecksthatthisisatransitiveirreflexiverelationonordinals.Wewriteαβifα≺βorα=β,andthisdefinesapa

4、rtialorderonordinals.Remark1.Thefollowingobservationsareimmediate•Theemptysetisanordinal.Theemptysetisamemberofanynonemptyordinal.•Anyelementofanordinalisanordinal.•Ifα,βareordinalsthenα≺βifandonlyifα⊂β.Lemma1.Ifαisanordinal,thensoisα+.Proof.Thesetα+isclearlytransitive.Toseethatitisurtransitive,le

5、ty⊂α∪{α}beatransitivepropersubset.Wewanttoshowthaty∈α∪{α}.Supposethaty6=α.Firstweclaimthatα/∈y.Forifthiswerethecase,transitivityofyimpliesα⊂y.Supposet∈yα.Thent∈y⊂α∪{α}sowemusthavet=α.Buttheny⊇α∪{α},whichisacontradiction.Thisshowsthatα/∈y.Butthenymustbeapropersubsetofα,andsinceαisanordinalthismean

6、sy∈α,asrequired.Thisshowsthatα+isurtransitive,anditisclearthateveryelementofα+isurtransitive,soα+isanordinal.1Lemma2.Ifasetcontainsanordinal,thenitcontainsaminimalordinal.Proof.LetXbeasetandsupposeα∈Xforsomeordinalα.ThenthesetZofelementsofXwhichareordinalsisnonempty,andapplyingtheAxiomofFoundation

7、tothissetweobtainanordinalβ∈XwiththepropertythatnoordinalinβisanelementofX.Proposition3(Minimalelement).LetB(x)beawfwithxfree,andsupposethereexistsanordinalαwithB(α).Thenthereaminimalsuchordinal.Thatis,thereexist

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。