A generalization of means inequality

A generalization of means inequality

ID:40023100

大小:93.65 KB

页数:8页

时间:2019-07-17

A generalization of means inequality_第1页
A generalization of means inequality_第2页
A generalization of means inequality_第3页
A generalization of means inequality_第4页
A generalization of means inequality_第5页
资源描述:

《A generalization of means inequality》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Thegeneralizationofmeansinequality,bySORINPUŞPANĂ1.Tchebishev’sinequality-discreteformIntoanotherpastarticle,IhavepresentationageneralizationofTchebishev’sinequality,usingthemultiplicativemonotonouskernelnotion.nMoreexactly,ifn-tuples~aa,,,a,Äbb,,,b

2、aresimilarly12n12nordered,thismeansthatwehavetheinequalitiesaabb0,ij,1,,nthenijijtheTchebishev’sinequalitynnnnpipabiiipaiipbii,i1i1i1i1p0,i1,,nn2,canbeputintheformin1n0i1pbaiiii1pbaiii,n1n0i1paiii1p

3、aiiif,ofcoursewesupposea0,i1,n.iThisleadstonTheorem1.1Ifn-tuples~aa,,,a,Äbb,,,b,a0,i1,,nare12n12nisimilarlyorderedandthecomponentsarenotallequal,thentheaplicationf:,nxi1pbaiiifx,nxi1paiiarestrictlyincresing.Proof.Bymathematicalind

4、uctionforn.Ifn2,weproofthatifaaandbb,thenthefunctionf:,12122xxpbapba111222f2xxxisstrictlyincreasing.Ofcourse,wehavepapa1122xxxbpa111pa22pb22ba12pb22b1f2xxxb1x,pa11pa22paa112p2andtheproblemissolvedinthiscase.Wesupposenowthatthe

5、affirmationistruexxpba111pbannnfn1xforfandweproofthisforf.Wehavefxb,n1nnxxnpa11pa2n1gxpnwheregx,inthehypothesisamaxa,andthexxniaaaa1in1nn1ninductionisclosed■Weobservethatintheproofweusedexclusivelythenextexponentialfunctio

6、nproperty:xaiifaathenthefunctionisdecreasing,andthisconducttothemultiplicativeijxajmonotonouskernelnotion.Definition1.1TheapplicationHAX:0,,,AXnonempty,iscalledmultiplicativemonotonouskernel(resp.multiplicativestrictlymonotonous)ifH(a,x)1a,aA,aa

7、,theapplicationxisdecreasing(resp.strictly1212H(a,x)2decreasing).WecangeneralizethelasttheorembyTheorem1.2IfHAX:0,,,AXisamultiplicativestrictlymonotonousÄbbb12nkernelandn-tuples~aa,,...,aand,,...,issimilarlyordered,12nÅccc12nc0,i1,,nan

8、dthecomponentsarenotallequal,thenthefunctionfX:ini1pbHaxiii,fxni1pcHaxiii,isstrictlyincreasing.Proof.WecanmakethisbyinductionlikeinTheorem1.1,orwecanusetheCauchy-Binetidentity:nnnnacii

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。