高中导数及其应用教案

高中导数及其应用教案

ID:39987722

大小:3.95 MB

页数:32页

时间:2019-07-16

高中导数及其应用教案_第1页
高中导数及其应用教案_第2页
高中导数及其应用教案_第3页
高中导数及其应用教案_第4页
高中导数及其应用教案_第5页
资源描述:

《高中导数及其应用教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、教育教师备课手册教师姓名学生姓名填写时间2012.2.1学科数学年级高三上课时间10:00-12:00课时计划2小时教学目标教学内容中考复习三角形个性化学习问题解决基础知识回顾,典型例题分析教学重点、难点教学过程导数及其运用知识网络导数的概念基本初等函数的导数公式导数函数的单调性研究的的的函数的极值与最值研究导数的定义导数的物理及几何意义意义导数的运算导数的四则运算法则及复合函数的导数导数的应用最优化问题计算定积分的的的定积分与微积分的基本定理定积分的应用第1讲导数的概念及运算★知识梳理★1.用定义

2、求函数的导数的步骤.(1)求函数的改变量Δy;(2)求平均变化率.(3)取极限,得导数(x0)=.2.导数的几何意义和物理意义几何意义:曲线f(x)在某一点(x0,y0)处的导数是过点(x0,y0)的切线的物理意义:若物体运动方程是s=s(t),在点P(i0,s(t0))处导数的意义是t=t0处的解析:斜率.;瞬时速度.Page32of32©XuezhiEducationAllRightsReserved3.几种常见函数的导数(为常数);();;;;;;.解析:4.运算法则①求导数的四则运算法则:;

3、;.解析:;②复合函数的求导法则:或★重难点突破★1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法2.难点:切线方程的求法及复合函数求导3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问题.(1)平均变化率的实际含义是改变量与自变量的改变量的比。问题1.比较函数与,当时,平均增长率的大小.点拨:解题规律技巧妙法总结:计算函数的平均增长率的基本步骤是(1)计算自变量的改变量(2)计算对应函数值的改变量(3)计算平均增长率:对于,又对于,故当时,的平均

4、增长率大于的平均增长率.(2)求复合函数的导数要坚持“将求导进行到底”的原则,问题2.已知,则.点拨:复合函数求导数计算不熟练,其与Page32of32©XuezhiEducationAllRightsReserved系数不一样也是一个复合的过程,有的同学忽视了,导致错解为:.设,,则.(3)求切线方程时已知点是否切点至关重要。问题3.求在点和处的切线方程。点拨:点在函数的曲线上,因此过点的切线的斜率就是在处的函数值;点不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线.切忌直接将,

5、看作曲线上的点用导数求解。即过点的切线的斜率为4,故切线为:.设过点的切线的切点为,则切线的斜率为,又,故,。即切线的斜率为4或12,从而过点的切线为:★热点考点题型探析★考点1:导数概念题型1.求函数在某一点的导函数值[例1]设函数在处可导,则等于  A.B.C.D.【解题思路】由定义直接计算[解析].故选【名师指引】求解本题的关键是变换出定义式考点2.求曲线的切线方程Page32of32©XuezhiEducationAllRightsReserved[例2](高明一中2009届高三上学期第四次

6、月考)如图,函数的图象在点P处的切线方程是,则=.【解题思路】区分过曲线处的切线与过点的切线的不同,后者的点不一定在曲线上.解析:观察图形,设,过P点的切线方程为即它与重合,比较系数知:故=2【名师指引】求切线方程时要注意所给的点是否是切点.若是,可以直接采用求导数的方法求;不是则需设出切点坐标.题型3.求计算连续函数在点处的瞬时变化率[例3]一球沿一斜面从停止开始自由滚下,10s内其运动方程是s=s(t)=t2(位移单位:m,时间单位:s),求小球在t=5时的加速度.【解题思路】计算连续函数在点处

7、的瞬时变化率实际上就是在点处的导数.解析:加速度v=(10+Δt)=10m/s.∴加速度v=2t=2×5=10m/s.【名师指引】计算连续函数在点处的瞬时变化率的基本步骤是1.计算2.计算【新题导练】.1.曲线和在它们交点处的两条切线与轴所围成的三角形面积是.解析:曲线和在它们的交点坐标是(1,1),两条切线方程分别是y=-x+2和y=2x-1,它们与轴所围成的三角形的面积是.点拨::与切线有关的问题,应有运用导数的意识,求两曲线的交点坐标只要联立解方程组即可.2.某质点的运动方程是,则在t=1s时

8、的瞬时速度为()A.-1B.-3C.7D.13Page32of32©XuezhiEducationAllRightsReserved解:B点拨:计算即可3.已知曲线C1:y=x2与C2:y=-(x-2)2,直线l与C1、C2都相切,求直线l的方程.解:设l与C1相切于点P(x1,x12),与C2相切于Q(x2,-(x2-2)2)对于C1:y′=2x,则与C1相切于点P的切线方程为y-x12=2x1(x-x1),即y=2x1x-x12①对于C2:y′=-2(x-2),与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。