资源描述:
《lecture16, norm of vectors and matrices》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、JimLambersMAT461/561SpringSemester2009-10Lecture16NotesThesenotescorrespondtoSection7.1inthetext.NormsofVectorsandMatricesInthenextlecture,wewillstudyiterativemethodsforsolvingsystemsoflinearequationsoftheformAx=b.Suchmethodsproduceasequenceofiteratesx(1),x(2),:::,thatwillhopefullyconvergetothes
2、olutionx.However,werstneedtodenewhatitmeansforaninnitesequenceofvectorstoconvergetosomevector.This,inturn,requiresanotionofdistance"betweenvectors.Givenvectorsxandyoflengthone,whicharesimplyscalarsxandy,themostnaturalnotionofdistancebetweenxandyisobtainedfromtheabsolutevalue;wedenethedistan
3、cetobejx yj.Wethereforedeneadistancefunctionforvectorsthathassimilarproperties.Afunctionkk:Rn!Riscalledavectornormifithasthefollowingproperties:1.kxk0foranyvectorx2Rn,andkxk=0ifandonlyifx=02.kxk=jjkxkforanyvectorx2Rnandanyscalar2R3.kx+ykkxk+kykforanyvectorsx,y2Rn.Thelastpropertyiscalledthetr
4、iangleinequality.Itshouldbenotedthatwhenn=1,theabsolutevaluefunctionisavectornorm.Themostcommonlyusedvectornormsbelongtothefamilyofp-norms,or`p-norms,whicharedenedbyn!1=pXkxk=jxjp:pii=1Itcanbeshownthatforanyp>0,kkpdenesavectornorm.Thefollowingp-normsareofparticularinterest:p=1:The`1-normkxk1
5、=jx1j+jx2j++jxnjp=2:The`2-normorEuclideannormqpkxk2=x21+x22++x2n=xTx1p=1:The`1-normkxk1=maxjxij1inItcanbeshownthatthe`2-normsatisestheCauchy-Bunyakovsky-SchwarzinequalityjxTyjkxkkyk22foranyvectorsx,y2Rn.Toseewhythisistrue,wenotethat!2XnXnXnX(xTy)2=xy=xyxy=x2y2+2xyxyiiiijjiiiijji=1i;j
6、=1i=1i