欢迎来到天天文库
浏览记录
ID:39905603
大小:73.50 KB
页数:12页
时间:2019-07-14
《西师版小学数学六年级上册知识点》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、西师版小学数学六年级(上)教学知识点 一、分数乘、除法(第1、3单元):(一)分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算【如:×5表示5个的和是多少或的5倍是多少】;(2)求一个数的几分之几是多少【8×表示8的是多少】。强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。3、两个因数的积与其中一
2、个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。4、打折:如一折表示现价是原价的(或),3.5折表示现价是原价的。(二)分数除法:1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。】(2)求一个数的倒数的方法:分子、分母调换位置。【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。】(3)1的倒数是1,0没有倒数。2、分数除法的意义:与整数除法相同,是已知两个因数的积
3、与其中一个因数,求另一个因数的运算。3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。【与乘法恰好相反】二、分数混合运算及解决问题(第6单元):(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)1、只有加减法或只有乘除法,要从左往右依次计算;2、既有加减法又有乘除法,先算乘除法后算加减法;3、如果有括号,先算小括号里的,再算中括号里的,最后算括号
4、外的。(二)分数加减乘除法的计算方法:1、分数加减法计算:如果分母不同,要先通分,然后分母不变,把分子相加减。2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母(能约分的要先约分再计算)。3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】(三)简便计算:主要是掌握好五大运算定律和两大运算性质的运用1、运算定律:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)加法交换律:a×b=b×a 加法结合律:(a×b
5、)×c=a×(b×c)加法分配律:(a+b)×c=a×b+a×c或(a-b)×c=a×b-a×c 【重点】2、运算性质:减法运算性质:a-(b+c)=a-b-c 除法运算性质:a÷(b×c)=a÷b÷c(四)解决问题:(方法)【重中之重】1、熟悉题意(至少要读两遍题)2、分析题意(这是重点,必须进行,不能马虎,草稿本上完成。)关键在于:(1)寻找题里的单位“1”;(2)写出相应的等量关系,注意标出已知与未知3、列式解答(注意选择合适的方法,不能反推的一定要用方程进行解答,这样才不容易错;注意要单位、答语要及时、准确写上。)4、检验(
6、养成检验的好习惯)三、比和按比例分配(第4单元):1、比的意义:两数相除又叫做这两个数的比。2、比各部分的名称 3 : 4=3÷4= 前项比号后项 比值 (注意:比的后项不能为0)3、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。【比的基本性质和商不变性质、分数基本性质具有一致性】4、比与除法、分数的关系: 联 系区别比前项比号(:)后项比值是一种关系除法被除数除号(÷)除数商是一种运算分数分子分数线(-)分母分数值是一种数注意:只有两个数的比,比号才能作除号;
7、三个数的比中比号不能作除号。5、求比值与化简比 方法区别求比值用前项除以后项的商结果是一个数化简比利用比的基本性质,最终化成一个最简单的整数比(注意:①前后项均为整数 ②前后项要互质)结果是一个比6、按比例分配解决问题:把一个数量按照一定的比来进行分配,这种分配方法叫做按比例分配。解题思路:(1)求出总份数;(2)求各占总数的几分之几;(3)根据分数的意义求出各是多少。[或用“份数方法”解决]四、负数的初步认识(第7单元):1、像+3,+15,+8844.43……这样的数都是正数。“+3”读作“正3”,“+”是正号。通常“+”号省略不写
8、。像-6,-10,-155……这样的数都是负数。“-6”读作“负6”,“-”是负号。“-”号不可以省略不写。0既不是正数,也不是负数。2、正数和负数可用来表示相反意义的量。五、圆(第2单元):(一)圆的认识
此文档下载收益归作者所有