欢迎来到天天文库
浏览记录
ID:39898263
大小:1.33 MB
页数:52页
时间:2019-07-14
《基本初等函数复习(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章基本初等函数归纳总结基本初等函数指数函数对数函数幂函数指数性质对数性质性质定义根式及性质分数指数幂意义无理数指数幂意义有理数指数幂运算性质定义函数图象性质单调性奇偶性定义及指数对数式互化对数性质运算性质及换底公式解析式图象性质单调性奇偶性五个具体函数性质知识要点1.整数指数幂的运算性质(1)am·an=am+n(m,n∈Z)(2)am÷an=am-n(a≠0,m,n∈Z)(3)(am)n=amn(m,n∈Z)(4)(ab)n=anbn(n∈Z)2.根式一般地,如果一个数的n次方等于a(n>1,且n∈N*),那么这个数叫做a
2、的n次方根.也就是,若xn=a,则x叫做a的n次方根,其中n>1,且n∈N*式子na叫做根式,这里n叫做根指数,a叫做被开方数.3.根式的性质(1)当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号表示.(2)当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号表示,负的n次方根用符号表示.正负两个n次方根可以合写为(a>0)(3)(4)当n为奇数时,;当n为偶数时,(5)负数没有偶次方根(6)零的任何次方根都是零()()îíì<³-=00aaaa()aann=4.
3、分数指数幂的意义5.有理数指数幂的运算性质(1)ar·as=ar+s(a>0,r,s∈Q);(2)ar÷as=ar-s(a>0,r,s∈Q);(3)(ar)s=ars(a>0,r,s∈Q);(4)(ab)r=arbr(a>0,b>0,r∈Q)*一般地,当a>0且是一个无理数时,也是一个确定的实数,故以上运算律对实数指数幂同样适用.6.指数函数一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R7.指数函数的图象和性质在R上是减函数(4)在R上是增函数(3)过点(0,1),即x=0时,y=1(2
4、)值域(0,+∞)(1)定义域:Ra>101时,a值越大,的图像越靠近y轴;当05、对数logeN简记作lnN.9.对数恒等式叫做对数恒等式10.对数的性质(1)负数和零没有对数;(2)1的对数是零,即loga1=0;(3)底数的对数等于1,即logaa=111.对数的运算法则如果a>0,a≠1,M>0,N>0,那么12换底公式注意换底公式在对数运算中的作用:①公式顺用和逆用;②由公式和运算性质推得的结论的作用.13.对数函数函数y=logax(a>0,且a≠1)叫做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).因为对数函数y=logax与指数函数y=ax互为反函数,所以y=logax的图象与y=ax的图象6、关于直线y=x对称.14.对数函数的图象和性质对数函数y=logax的图象和性质分a>1及0<a<1两种情况.注意作图时先作y=ax的图象,再作y=ax的图象关于直线y=x的对称曲线,就可以得到y=logax的图象,其图象和性质见下表14.对数函数的图象和性质a>101时,a值越大,y=logax的图像越靠近x轴;当07、值越大,y=logax的图像越远离x轴。15、函数y=xα叫做幂函数,其中x是自变量,α是常数.xyO函数性质y=xy=x2y=x3y=x-1定义域值域奇偶性单调性公共点幂函数的性质RRR[0,+∞)[0,+∞)[0,+∞)增[0,+∞)(0,+∞)减(-∞,0]减(-∞,0)减RR奇奇奇增增增偶非奇非偶{x8、x≠0}{y9、y≠0}(1,1)一、熟练掌握指数幂的定义、运算法则、公式和对数的定义、运算法则、公式是指对函数及其一切运算赖以施行的基础1.指数幂的定义与运算[答案]DC[例2]方程2x-x2=2x+1的解的个数为______.10、[解析]原方程即2x=x2+2x+1,在同一坐标系中画出y=2x,y=x2+2x+1的图象,由图象可知有3个交点.[例3]0.32,log20.3,20.3这三数之间的大小顺序是()A.0.32<20.3
5、对数logeN简记作lnN.9.对数恒等式叫做对数恒等式10.对数的性质(1)负数和零没有对数;(2)1的对数是零,即loga1=0;(3)底数的对数等于1,即logaa=111.对数的运算法则如果a>0,a≠1,M>0,N>0,那么12换底公式注意换底公式在对数运算中的作用:①公式顺用和逆用;②由公式和运算性质推得的结论的作用.13.对数函数函数y=logax(a>0,且a≠1)叫做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).因为对数函数y=logax与指数函数y=ax互为反函数,所以y=logax的图象与y=ax的图象
6、关于直线y=x对称.14.对数函数的图象和性质对数函数y=logax的图象和性质分a>1及0<a<1两种情况.注意作图时先作y=ax的图象,再作y=ax的图象关于直线y=x的对称曲线,就可以得到y=logax的图象,其图象和性质见下表14.对数函数的图象和性质a>101时,a值越大,y=logax的图像越靠近x轴;当07、值越大,y=logax的图像越远离x轴。15、函数y=xα叫做幂函数,其中x是自变量,α是常数.xyO函数性质y=xy=x2y=x3y=x-1定义域值域奇偶性单调性公共点幂函数的性质RRR[0,+∞)[0,+∞)[0,+∞)增[0,+∞)(0,+∞)减(-∞,0]减(-∞,0)减RR奇奇奇增增增偶非奇非偶{x8、x≠0}{y9、y≠0}(1,1)一、熟练掌握指数幂的定义、运算法则、公式和对数的定义、运算法则、公式是指对函数及其一切运算赖以施行的基础1.指数幂的定义与运算[答案]DC[例2]方程2x-x2=2x+1的解的个数为______.10、[解析]原方程即2x=x2+2x+1,在同一坐标系中画出y=2x,y=x2+2x+1的图象,由图象可知有3个交点.[例3]0.32,log20.3,20.3这三数之间的大小顺序是()A.0.32<20.3
7、值越大,y=logax的图像越远离x轴。15、函数y=xα叫做幂函数,其中x是自变量,α是常数.xyO函数性质y=xy=x2y=x3y=x-1定义域值域奇偶性单调性公共点幂函数的性质RRR[0,+∞)[0,+∞)[0,+∞)增[0,+∞)(0,+∞)减(-∞,0]减(-∞,0)减RR奇奇奇增增增偶非奇非偶{x
8、x≠0}{y
9、y≠0}(1,1)一、熟练掌握指数幂的定义、运算法则、公式和对数的定义、运算法则、公式是指对函数及其一切运算赖以施行的基础1.指数幂的定义与运算[答案]DC[例2]方程2x-x2=2x+1的解的个数为______.
10、[解析]原方程即2x=x2+2x+1,在同一坐标系中画出y=2x,y=x2+2x+1的图象,由图象可知有3个交点.[例3]0.32,log20.3,20.3这三数之间的大小顺序是()A.0.32<20.3
此文档下载收益归作者所有