(Quasi)periodic solutions in (in)finite dimensional

(Quasi)periodic solutions in (in)finite dimensional

ID:39887646

大小:228.36 KB

页数:14页

时间:2019-07-14

(Quasi)periodic solutions in (in)finite dimensional_第1页
(Quasi)periodic solutions in (in)finite dimensional_第2页
(Quasi)periodic solutions in (in)finite dimensional_第3页
(Quasi)periodic solutions in (in)finite dimensional_第4页
(Quasi)periodic solutions in (in)finite dimensional_第5页
资源描述:

《(Quasi)periodic solutions in (in)finite dimensional》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Portugal.Math.(N.S.)PortugaliaeMathematicaVol.xx,Fasc.,200x,xxx–xxxcEuropeanMathematicalSociety(Quasi)periodicsolutionsin(in)finitedimensionalhamiltoniansystemswithapplicationstoCelestialMechanicsandwaveequationLucaBiasco,EnricoValdinoci∗Abstract.Wedescribeagen

2、eralmethod,basedonaLyapunov–Schmidtreductionandperturbativetechniques,recentlyusedbytheauthorstofindperiodicandquasi–periocidsolutionsbothinfiniteandininfinitedimensionalhamiltoniansystems.WealsoillustratesomeconcreteapplicationstoCelestialMechanicsandtononlinear

3、waveequation.MathematicsSubjectClassification(2000).Primary34C25,35L05,70F10,34C27;Secondary37K50,37J40,70K43.Keywords.Nearly–integrableHamiltoniansystems,periodicsolutionslowerdimen-sionalelliptictori.N–bodyproblem,waveequation.IntroductionInthisnote,wedealwit

4、hfourtopics:Spatialplanetarythree-bodyproblem.Weconsiderone“star”andtwo“planets”,modelledbythreemassivepoints,interactingthroughgravityinathree-dimensionalspace.Nearthelimitingsolutionsgivenbythetwoplanetsrevolv-ingaroundthestaronKeplerianellipseswithsmallecce

5、ntricityandsmallnon-zeromutualinclination,thesystemisprovedtohavetwo-dimensional,elliptic,quasiperiodicsolutions,providedthemassesoftheplanetsaresmallenoughcom-paredtothemassofthestarandprovidedtheosculatingKeplerianmajorsemiaxesbelongtoatwo-dimensionalsetofde

6、nsityclosetoone.Planarplanetarymany-bodyproblem.Asabove,butone“star”andN“planets”,theinteriortwoonesbiggerthantheothers(asintheexteriorsolarsystem).NearthelimitingsolutionsgivenbytheNplanetsrevolvingaroundthe∗SupportedbyMIURVariationalMethodsandNonlinearDiffere

7、ntialEquations.2BiascoValdinocistaronKeplerianellipseswithsmalleccentricityandzeromutualinclination,thesystemisprovedtohaveN-dimensional,elliptic,quasiperiodicsolutions.PeriodicorbitsapproachinglowerdimensionalellipticKAMtori.ByageneralBirkhoff-Lewis-Conley-Zeh

8、nder-typeresult,weprovetheexistenceofinfinitelymanyperiodicsolutions,withlargerandlargerminimalperiod,accumu-latingontoellipticinvarianttoriofHamiltoniansystems.Asanapplication,peri

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。