资源描述:
《Almost Periodic Solutions of Differential Equations in Banach Spaces》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ALMOSTPERIODICSOLUTIONSOFDIFFERENTIALEQUATIONSINBANACHSPACESYoshiyukiHinoDepartmentofMathematicsandInformaticsChibaUniversity,Chiba,JapanToshikiNaitoDepartmentofMathematicsUniversityofElectro-Communications,Tokyo,JapanNguyenVanMinhDepartmentofMathematicsHanoiUn
2、iversityofScience,Hanoi,VietnamJongSonShinDepartmentofMathematicsKoreaUniversity,Tokyo,JapanPrefaceAlmostperiodicsolutionsofdifferentialequationshavebeenstudiedsincetheverybeginningofthiscentury.Thetheoryofalmostperiodicsolutionshasbeende-velopedinconnectionwith
3、problemsofdifferentialequations,dynamicalsystems,stabilitytheoryanditsapplicationstocontroltheoryandotherareasofmathemat-ics.TheclassicalbooksbyC.Corduneanu[50],A.M.Fink[67],T.Yoshizawa[231],L.AmerioandG.Prouse[7],B.M.LevitanandV.V.Zhikov[137]gaveaverynicepresen
4、tationofmethodsaswellasresultsinthearea.Inrecentyears,therehasbeenanincreasinginterestinextendingcertainclassicalresultstodifferentialequationsinBanachspaces.Inthisbookwewillmakeanattempttogathersystematicallycertainrecentresultsinthisdirection.Weoutlinebrieflyth
5、econtentsofourbook.Themainresultspresentedhereareconcernedwithconditionsfortheexistenceofperiodicandalmostperiodicsolutionsanditsconnectionwithstabilitytheory.Inthequalitativetheoryofdifferentialequationstherearetwoclassicalresultswhichserveasmodelsformanyworksi
6、nthearea.Namely,TheoremAAperiodicinhomogeneouslinearequationhasauniqueperiodicsolution(withthesameperiod)if1isnotaneigenvalueofitsmonodromyoperator.TheoremBAperiodicinhomogeneouslinearequationhasaperiodicsolution(withthesameperiod)ifandonlyifithasaboundedsoluti
7、on.Inourbook,amainpartwillbedevotedtodiscussthequestionashowtoex-tendtheseresultstothecaseofalmostperiodicsolutionsof(linearandnonlinear)equationsinBanachspaces.Tothisend,inthefirstchapterwepresentintroduc-tionstothetheoryofsemigroupsoflinearoperators(Section1),
8、itsapplicationstoevolutionequations(Section2)andtheharmonicanalysisofboundedfunctionsontherealline(Section3).InChapter2wepresenttheresultsconcernedwithautonomousaswellasperi