Quaternionic_Analysis__Representation_Theory_and_Physics外文

Quaternionic_Analysis__Representation_Theory_and_Physics外文

ID:39813826

大小:558.75 KB

页数:63页

时间:2019-07-11

Quaternionic_Analysis__Representation_Theory_and_Physics外文_第1页
Quaternionic_Analysis__Representation_Theory_and_Physics外文_第2页
Quaternionic_Analysis__Representation_Theory_and_Physics外文_第3页
Quaternionic_Analysis__Representation_Theory_and_Physics外文_第4页
Quaternionic_Analysis__Representation_Theory_and_Physics外文_第5页
资源描述:

《Quaternionic_Analysis__Representation_Theory_and_Physics外文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、QuaternionicAnalysis,RepresentationTheoryandPhysicsIgorFrenkelandMatveiLibineMay25,2008AbstractWedevelopquaternionicanalysisusingasaguidingprinciplerepresentationtheoryofvariousrealformsoftheconformalgroup.WefirstreviewtheCauchy-FueterandPoissonformulasandexpl

2、aintheirrepresentationtheoreticmeaning.Therequirementofunitar-ityofrepresentationsleadsustotheextensionsoftheseformulasintheMinkowskispace,whichcanbeviewedasanotherrealformofquaternions.Representationtheoryalsosug-gestsaquaternionicversionoftheCauchyformulafo

3、rthesecondorderpole.Remarkably,thederivativeappearinginthecomplexcaseisreplacedbytheMaxwellequationsinthequaternioniccounterpart.Wealsouncovertheconnectionbetweenquaternionicanalysisandvariousstructuresinquantummechanicsandquantumfieldtheory,suchasthespec-trum

4、ofthehydrogenatom,polarizationofvacuum,one-loopFeynmanintegrals.Wealsomakesomefurtherconjectures.Themaingoalofthisandoursubsequentpaperistore-vivequaternionicanalysisandtoshowprofoundrelationsbetweenquaternionicanalysis,representationtheoryandfour-dimensional

5、physics.Keywords:Cauchy-Fueterformula,Feynmanintegrals,Maxwellequations,conformalgroup,Minkowskispace,Cayleytransform.1IntroductionItiswellknownthatafterdiscoveringthealgebraofquaternionsH=R1⊕Ri⊕Rj⊕RkandcarvingthedefiningrelationsonastoneofDublin’sBroughamBrid

6、geonthe16October1843,theIrishphysicistandmathematicianWilliamRowanHamilton(1805-1865)devotedtheremainingyearsofhislifedevelopingthenewtheorywhichhebelievedwouldhaveprofoundarXiv:0711.2699v4[math.RT]25May2008applicationsinphysics.Butonehadtowaitanother90yearsb

7、eforevonRudolfFueterproducedakeyresultofquaternionicanalysis,anexactquaternioniccounterpartoftheCauchyintegralformulaI1f(z)dzf(w)=.(1)2πiz−wBecauseofthenoncommutativityofquaternions,thisformulacomesintwoversions,oneforeachanalogueofthecomplexholomorphicfuncti

8、ons–left-andright-regularquaternionicfunc-tions:Z1(Z−W)−1f(W)=·∗dZ·f(Z),(2)2π2∂Udet(Z−W)Z1(Z−W)−1g(W)=g(Z)·∗dZ·,∀W∈U,(3)2π2∂Udet(Z−W)1whereU⊂Hisaboundedopenset,thedeterminantistakeninthes

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。