Pruning least objective contribution in KMSE

Pruning least objective contribution in KMSE

ID:39813764

大小:446.32 KB

页数:10页

时间:2019-07-11

Pruning least objective contribution in KMSE_第1页
Pruning least objective contribution in KMSE_第2页
Pruning least objective contribution in KMSE_第3页
Pruning least objective contribution in KMSE_第4页
Pruning least objective contribution in KMSE_第5页
资源描述:

《Pruning least objective contribution in KMSE》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Neurocomputing74(2011)3009–3018ContentslistsavailableatScienceDirectNeurocomputingjournalhomepage:www.elsevier.com/locate/neucomPruningleastobjectivecontributioninKMSEa,nbaa,cbYong-PingZhao,Jian-GuoSun,Zhong-HuaDu,Zhi-AnZhang,Hai-BoZhangaZNDYofMinist

2、erialKeyLaboratory,NanjingUniversityofScienceandTechnology,Nanjing210094,PRChinabCollegeofAutomationandEngineering,NanjingUniversityofAeronauticsandAstronautics,Nanjing210016,PRChinacCollegeofEnergyandPowerEngineering,NanjingUniversityofAeronauticsan

3、dAstronautics,Nanjing210016,PRChinaarticleinfoabstractArticlehistory:Althoughkernelminimumsquarederror(KMSE)iscomputationallysimple,i.e.,itonlyneedssolvingaReceived10October2010linearequationset,itsuffersfromthedrawbackthatinthetestingphasethecomputa

4、tionalefficiencyReceivedinrevisedformdecreasesseriouslyasthetrainingsamplesincrease.TheunderlyingreasonisthatthesolutionofNaı¨ve18February2011KMSEisrepresentedbyallthetrainingsamplesinthefeaturespace.Hence,inthispaper,amethodofAccepted7April2011select

5、ingsignificantnodesforKMSEisproposed.Duringeachcalculationround,thepresentedCommunicatedbyS.Choialgorithmprunesthetrainingsamplemakingleastcontributiontotheobjectivefunction,hencecalledAvailableonline23May2011asPLOC-KMSE.Toacceleratethetrainingprocedu

6、re,abatchofso-callednonsignificantnodesisprunedKeywords:insteadofonebyoneinPLOC-KMSE,andthisspeedupalgorithmisnamedMPLOC-KMSEforshort.ToKernellearningshowtheefficacyandfeasibilityoftheproposedPLOC-KMSEandMPLOC-KMSE,theexperimentsonMinimumsquarederrorbe

7、nchmarkdatasetsandreal-worldinstancesarereported.TheexperimentalresultsdemonstratethatRegressionPLOC-KMSEandMPLOC-KMSErequirethefewestsignificantnodescomparedwithotheralgorithms.ClassificationSignificantnodesThatistosay,theircomputationalefficiencyinthet

8、estingphaseisbest,thussuitableforenvironmentshavingastrictdemandofcomputationalefficiency.Inaddition,fromtheperformedexperiments,itiseasilyknownthattheproposedMPLOC-KMSEacceleratesthetrainingprocedurewithoutsacrificingthecomputationalefficiencyoftesting

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。