欢迎来到天天文库
浏览记录
ID:39804483
大小:35.19 KB
页数:5页
时间:2019-07-11
《数学北师大版八年级下册范亚林 教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二章一元一次不等式与一元一次不等式组4.一元一次不等式(一)一、学生知识状况分析学生已经经历了不等式的基本性质、不等式的解集的学习,对不等关系已经有了初步的认识和体会。在本节的学习中可以类比一元一次方程的解法和对不等式的性质的利用加深对解不等式的理解。学生在学习中要能将本节内容与上节内容联系起来,强化数轴在解一元一次不等式中的作用,为后续学习解不等式组打下坚实的基础。二、教学任务分析本节课的教学内容是一元一次不等式的形成及其解集的表示,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的
2、过程,并通过学生的讨论、交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。本课时的学习任务主要有两个:第一是让学生体会和经历一元一次不等式概念的形成过程;第二是让学生会解简单的一元一次不等式并能在数轴上表示其解集,最终实现提高学生分析问题、解决问题的能力的任务。1.教学目标:(一)知识与技能:会解简单的一元一次不等式,并能在数轴上表示其解集。(二)过程与方法:让学生经历一元一次不等式的形成过程,通过类比理解一
3、元一次不等式的解法。(三)情感与态度:通过一元一次不等式的学习,提高学生的自主学习能力,激发学生的探究兴趣。2.教学重点:掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。3.教学难点:一元一次不等式的解法。三、教学过程分析本节课设计了五个教学环节:第一环节:自主学习,复习导入;第二环节:合作交流,探索新知;第三环节:巩固练习,分层提高;第四环节:课堂小结;第五环节:布置作业。第一环节自主学习,复习导入活动内容:复习提问:(1)不等式的三条基本性质是什么?(2)运用不等式基本性质把下列不
4、等式化成x>a或xx-5③④(3)什么叫一元一次方程?解一元一次方程的步骤是什么?活动目的:通过问题,让学生回顾一元一次方程的概念和解一元一次方程的步骤,以及不等式的意义,不等式的基本性质和不等式的解集,为后面归纳一元一次不等式的概念及解法提供条件。同时让学生体会等式与不等式之间所蕴含的特殊与一般的关系。活动的注意事项:学生分组讨论复习,派学生代表进行交流。在学生交流过程中,对回答完整的学生予以肯定,对学生出现的问题共同讨论反思。第二环节:合作交流,探索新知活动内容
5、1:观察下列不等式:(1)6+3x>30(2)x+17<5x(3)x>5(4)这些不等式有哪些共同点?活动目的:引导学生通过对上述不等式的观察、比较,发现其异同,结合一元一次方程的概念类比,学生不难得出一元一次不等式的概念。让学生意识到不等式也可以像方程那样去研究,培养其化归、转换的意识。活动的注意事项:学生自行归纳总结,发言讨论,教师在总结学生发言的基础上板书一元一次不等式的定义:“左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式,叫做一元一次不等式(linearinequa
6、litywithunknown)”。并向学生强调一元一次不等式的主要特征。巩固概念想一想:在前面几节课中,你列出了哪些一元一次不等式?试举两例,并与同伴交流。活动目的:让学生进一步理解一元一次不等式的概念,不仅会识别一元一次不等式,而且回味得到不等式的建模过程,体会一元一次不等式是最基本、最重要的不等式。活动的注意事项:学生先独立思考,再进行交流。活动2:解一元一次不等式例1.解不等式3-x<2x+6,并把它的解集表示在数轴上。提出问题:1、你能利用不等式的基本性质解决吗?试一试。2、在解不等式的
7、过程中是否有与解一元一次方程类似的步骤?能否归纳解一元一次不等式的基本步骤?3、在解一元一次不等式的步骤中,应注意什么?活动目的:1.解一元一次不等式大致要分五个步骤进行:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化1。在(1)和(5)中,如果乘数或除数是负数,要把不等号的方向改变。2.在数轴上表示不等式的解集时,要注意不等号以及端点的情况。活动的注意事项:学生通过小组合作学习的方式探索用不等式的基本性质去求解并相互交流做法,通过观察、探讨、交流、归纳一元一次不等式的解法
8、。例2.解不等式≥,并把它的解集表示在数轴上。解:去分母,得3(x-2)≥2(7-x)去括号,得3x-6≥14-2x移项、合并同类项,得5x≥20两边都除以5,得x≥4这个不等式的解集在数轴上表示如下01-1-223456活动目的:通过师生共同探讨,经历去分母、去括号、移项、合并同类项、系数化1(即化为“x>a”或“x
此文档下载收益归作者所有