欢迎来到天天文库
浏览记录
ID:39796847
大小:13.64 KB
页数:3页
时间:2019-07-11
《数学北师大版九年级上册一元二次方程应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、年级九年级(上)科目代数课题6.应用一元二次方程㈢课时教学目标①通过分析问题中的数量关系,建立方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。②经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,从中感受到数学学习的意义;③能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;④在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。重点难点通过应用实例,在实际问题的解决中让学生感受到其广泛应用,并在
2、具体应用中增强学生的应用能力。过程内容及方法研讨复备第一环节;前置诊断,开辟道路活动内容:请同学们回忆并回答与利润相关的知识?9折要乘以90%或0.9或,那么x折呢?活动目的:通过回顾,使学生熟悉利润背景的实际问题中蕴含的数量关系。教学方法:学生掌握得比较理想,关于x折问题,需要关注学生掌握情况。第二环节:做一做,探索新知活动内容:新华商场销售某种冰箱,每台进货价为2500元。市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的降价应为多少元?(做了改动,降低难度)
3、分析:本例中涉及的数量关系较多,学生在思考时可能会有一定的难度。所以,教学时我采用列表的形式分析其中的数量关系:本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5000元如果设每台冰箱降价x元,那么每台冰箱的定价应为元。每天的销售量/台每台的销售利润/元总销售利润/元降价前降价后填完上表后,就可以列出一个方程,进而解决问题了。当然,解题思路不应拘泥于这一种,再利用上述方法解完此题后,可以鼓励学生自主探索,找寻其他解题的思路和方法。如求定价为多少?直接设每台冰箱的定价应为x元,应如何解决?巩固练习:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。调查
4、表明:这种台灯的售价每上涨1元,其销售量就将减少10个。为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?请你利用方程解决这一问题。教学方法:每种类型的问题设置都经过精心准备。通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到列方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。采取的是一讲一练的教学方法。探索与创新:一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手。这次会议到会的人数是多少?采取启发、引导、积极参与等方法,指导学生独立
5、思考,寻找问题的可能性答案;培养学生敢于批判、勇于创新的精神;培养学生发现问题、分析问题、解决问题的勇气和能力。第三环节:练一练,巩固新知活动内容:1.P55随堂练习2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?:选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及方程观的进一步形成。第四环节:收获与感悟活动内容:通过两节课的学
6、习,你能简要说明利用方程解决实际问题的关键和步骤吗?有哪些收获?教学方法:让学生能说出利用方程解决实际问题的关键和步骤:关键:寻找等量关系步骤:其一是整体地、系统地审清问题;其二是把握问题中的“相等关系”;其三是正确求解方程并检验解的合理性。第五环节:布置作业P56习题2.9第1-4题选作题(供学有余力的学生选作):P59复习题23反思与后记
此文档下载收益归作者所有