专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)

专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)

ID:39794694

大小:3.62 MB

页数:37页

时间:2019-07-11

专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)_第1页
专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)_第2页
专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)_第3页
专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)_第4页
专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)_第5页
资源描述:

《专题3.2 导数在研究函数中的应用(教学案)-2014年高考数学(理)一轮复习精品资料(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小

2、值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.【高频考点突破】考点一、运用导数解决函数的单调性问题例1、已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的

3、值;(2)求f(x)的单调区间.【解析】(1)由f(x)=,学科网学易学生平台,专为高三考生打造,学易,让学习更容易!学易平台,诚邀各地代理,有意者,敬请联系!37联系地址:北京市房山区星城北里综合办公楼(学科网)邮政编码:102413电话:010-58425255/6/7传真:010-89313898【方法技巧】求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数

4、根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.【变式探究】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)是否存在a使函数f(x)为R上的单调递减函数,若存在,求出a的取值范围;若不存在,请说明理由.即[-x2+(a-2)x+a]ex≤0对x∈R都成立.学科网学易学生平台,专为高三考生打造,学易

5、,让学习更容易!学易平台,诚邀各地代理,有意者,敬请联系!37联系地址:北京市房山区星城北里综合办公楼(学科网)邮政编码:102413电话:010-58425255/6/7传真:010-89313898∵ex>0,∴x2-(a-2)x-a≥0对x∈R都成立.∴Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故不存在a使函数f(x)在R上单调递减.考点二、运用导数解决函数的极值问题例2、若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)

6、=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.【求函数极值的步骤】(1)确定函数的定义域;(2)求方程f′(x)=0的根;(3)用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;(4)由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.【变式探究】设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-对称,且f′(1)=0.(1)求实数a,b的值;(2

7、)求函数f(x)的极值.解析:(1)因为f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b,学科网学易学生平台,专为高三考生打造,学易,让学习更容易!学易平台,诚邀各地代理,有意者,敬请联系!37联系地址:北京市房山区星城北里综合办公楼(学科网)邮政编码:102413电话:010-58425255/6/7传真:010-89313898考点三、运用导数解决函数的最值问题例3、已知函数f(x)=(x-k)ex.[来源:Z*xx*k.Com](1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最

8、小值.【解析】(1)f′(x)=(x-k+1)ex.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:x(-∞,k-1)k-1(k-1,+∞)学科网学易学生平台,专为高三考生打造,学易,让学习更容易!学易平台,诚邀各地代理,有意者,敬请联系!37联系地址:北京市房山区星城北里综合办公楼(学科网)邮政编码:102413

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。