高三文科数学(函数模型及其应用(

高三文科数学(函数模型及其应用(

ID:39788609

大小:354.32 KB

页数:17页

时间:2019-07-11

高三文科数学(函数模型及其应用(_第1页
高三文科数学(函数模型及其应用(_第2页
高三文科数学(函数模型及其应用(_第3页
高三文科数学(函数模型及其应用(_第4页
高三文科数学(函数模型及其应用(_第5页
资源描述:

《高三文科数学(函数模型及其应用(》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数模型及其应用(1)了解指数函数、对数函数、幂函数、分段函数等函数模型的意义,并能建立简单的数学模型,利用这些知识解决应用问题.复习目标复习回顾某汽车运输公司,购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x()的关系为,则每辆客车营运多少年使其营运年平均利润最大.()(A)2(B)4(C)5(D)6C分析年平均利润典例精讲题型四分段函数模型典例精讲例1某人开汽车以60km/h的速度从A地到150km远处的B地,在B地停留1h后,再以50km/h的速度返回A地,把汽车与A地的距离x(km)表

2、示为时间t(h)的函数为.60tt∈[0,2.5]x=150t∈(2.5,3.5]325-50tt∈(3.5,6.5]典例精讲练习《学海导航》(同步训练)第11讲第4题典例精讲某种药物成人按规定的剂量服用后,血液中的含药量y(微克/毫升)与服药后的时间t(小时)之间的关系近似满足如图所示曲线,其中OA是线段,AB是顶点为B的抛物线的一段.例2典例精讲(1)写出服药后y与t的函数关系式;(2)若血液中该药含量不低于2微克/毫升才有疗效,则第二次服药应最迟在第一次服药后几小时服用?典例精讲解析(1)由图象可知,当0≤t≤2时,y

3、=kt.把A(2,8)代入得k=4;当2≤t≤8时,y=a(t-8)2把A(2,8)代入得a=所以典例精讲(2)由题意可知,当y≥2时,有疗效,所以所以第二次服药最迟应在第一次服药后5小时服用.解这个不等式组得2

4、部分需征税,设全月应纳税所得额为,=全月收入—800,税率见下表:典例精讲级数全月纳税所得额()税率1不超过500元的部分5%2超过500元至2000元的部分10%3超过2000至5000元的部分15%………9超过10000元的部分45%典例精讲①若应纳税额为,试用分段函数表示1~3级纳税额的计算公式;②某人2003年1月份总收入为3000元,试计算该人此月份应缴纳个人所得税多少元?③某人1月份应缴纳此项税款26.78元,则他当月工资总收入介于:()(A)800~900元(B)900~1200元(C)1200~1500元(D

5、)1500~2800元(205元)C方法提炼1.理解题意,找出数量关系是解应用题的前提,因此,解题时应认真阅读题目,深刻理解题意.2.建立数学模型,确定解决方法是解应用题的关键,因此,解题时要认真梳理题目中的数量关系,选择适当的方法加以解决.3.函数的应用问题通常是以下几种类型:可行性问题、最优解问题(即最大值或最小值问题,如费用最小,效益最大等问题)、决策问题.解题时要灵活运用函数的性质和数学方法.4.应用题中的函数由于它具有实际意义,因此函数中的变量除要求使函数本身有意义外,还要符合其实际意义.方法提炼课后作业《学海导航

6、》(同步训练)第11讲

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。