数学北师大版八年级下册分式及分式方程应用

数学北师大版八年级下册分式及分式方程应用

ID:39782080

大小:315.39 KB

页数:7页

时间:2019-07-11

数学北师大版八年级下册分式及分式方程应用_第1页
数学北师大版八年级下册分式及分式方程应用_第2页
数学北师大版八年级下册分式及分式方程应用_第3页
数学北师大版八年级下册分式及分式方程应用_第4页
数学北师大版八年级下册分式及分式方程应用_第5页
资源描述:

《数学北师大版八年级下册分式及分式方程应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第五章《分式与分式方程》复习课●教学目标(一)教学知识点1.用分式表示生活中的一些量.2.分式的基本性质及分式的有关运算法则.3.分式方程的概念及其解法.4.列分式方程,建立现实情境中的数学模型.(二)能力训练要求1.使学生有目的的梳理知识,形成这一章完整的知识体系.2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.(三)情感与价值观要求使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,

2、成为一个乐于学习的人.●教学重点1.分式的概念及其基本性质.2.分式的运算法则.3.分式方程的概念及其解法.4.分式方程的应用.●教学难点1.分式的运算及分式方程的解法.2.分式方程的应用.●教学方法讨论——交流法讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.●教具准备投影片两张,实物投影仪第一张:问题串,(记作§5.5A)7/7第二张:例题分析,(记作§5.5B)●教学过程Ⅰ.提出问题,回顾本章的知识.出示投影片(§5.5A)问题串:1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请

3、举一例.2.分式的性质及有关运算法则与分数有什么异同?3.如何解分式方程?它与解一元一次方程有何联系与区别?[师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.(教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)[生]实际生活中的一些量可以用分式表示,例如(用实物投影)某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?[生]我们组来回答此问题,此人晨练时平均每分钟行米.我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________

4、m.[生]应为m.[师]同学们举的例子都很有特色,谁还能举.[生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?[生]原价为元.……[师],,都是分式.分式有什么特点?和整式有何区别?[生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.7/7[生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?解:设采用新工艺前、后每

5、时分别加工x个,1.5x个,根据题意,得=+10解,得x=40,1.5x=40×1.5=60.经检验x=40是原方程的根,也符合题意.答:采用新工艺前后每时分别加工40个、60个.[师]下面我们来看第二个问题.[生]分式的性质及其有关运算与分数的异同,我们组列表如下:式子分数分式A、B是两个整数,B≠0A、B是两个整式,B含有字母,字母的取值应保证B≠0=M是不等于零的数,分数基本性质,分数通分M是不等于零的整式,分式基本性质=M是不等于零的数,分数基本性质,分数约分M是不等于零的整式,分式基本性质,分式约分·=分数乘法法

6、则分式的乘法法则÷=分数除法法则分式除法法则±=同分母分数加减法法则同分母分式加减法法则±=±=异分母分数加减法法则异分母分式加减法法则[师]用列表格的方式,使分数与分式的性质及其运算法则的异同清晰可见.你们的想法老师很欣赏.[生]我们组来回答第三个问题吧.先看第一问.7/7解分式方程分三步:第一步,去分母,把分式方程转化为整式方程;第二步,解这个整式方程;第三步,将整式方程的根代入最简公分母,如果使最简公分母为零,则此根为原方程的增根,若最简公分母不为零,则此根是原方程的解.[生]我认为从解分式方程的步骤就可以看出分式方

7、程是通过去分母转化为一元一次方程后完成的.但解分式方程必须检验,这就是和一元一次方程的区别.因为在把分式方程转化为整式方程时,方程两边同乘以含未知数的最简公分母,若解出的整式方程(这里通常是一元一次方程)的根使最简公分母为零,则原分式方程无意义,所以分式方程必须验根.[师]同学们三个问题都回答得很好.下面我们来看一组例题(出示投影片§3.5B)[例1]当x为何值时,下列分式的值为零.(1);(2).解:(1)由分子(x-2)(x-3)=0,得x=2或x=3.当x=2时,x2-9≠0;当x=3时,x2-9=0.所以当x=2时

8、,分式的值为零.(2)由分子x-1=0,得x=1,而当x=1时,分母x+1=1+1=2≠0.所以当x=1时,分式的值为零.[例2]约分(1);(2).解:(1)==(2)=-=-[例3]计算:7/7(1)÷(-)(2)-(2003年南京市中考题)解:(1)÷(-)=÷=×=(2)-=-=-=[例4]下列

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。