欢迎来到天天文库
浏览记录
ID:39772686
大小:1.00 MB
页数:22页
时间:2019-07-11
《Sequentiao Monte Carlo Methods for Multi-Target Filtering with Random Finite Sets》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、I.INTRODUCTIONMulti-targetfilteringisaclassofdynamicSequentialMonteCarlostateestimationproblemsinwhichtheentityofinterestisafinitesetthatisrandominthenumberMethodsforMulti-Targetofelementsaswellasthevaluesofindividualelements[4,5,6].Randomfinitesets(RFSs)areFi
2、lteringwithRandomFinitethereforenaturalrepresentationsofmulti-targetstatesandmulti-targetmeasurements.ThemodellingofSetsmulti-targetdynamicsusingrandomsetsnaturallyleadstoalgorithmswhichincorporatetrackinitiationandtermination,aprocedurethathasmostlybeenperfor
3、medseparatelyintraditionaltrackingBA-NGUVOalgorithms.Moreimportantly,randomsetsprovideUniversityofMelbournearigorousunifiedframeworkfortheseeminglyAustraliaunconnectedsubdisciplinesofdatafusion[15,17,25].SUMEETPALSINGHAlthoughstochasticgeometricalmodels,includ
4、ingCambridgeUniversitydeformabletemplatesandRFSs(orsimplefinitepointU.K.processes)havelongbeenusedbystatisticianstoARNAUDDOUCETdeveloptechniquesforobjectrecognitioninstaticUniversityofBritishColumbiaCanadaimages[2],theirusehasbeenlargelyoverlookedinthedatafusi
5、onandtrackingliteratureuntilrecently[24].TheearliestpublishedworkusingapointRandomfinitesets(RFSs)arenaturalrepresentationsofprocessformalismformulti-targetfilteringappearsmulti-targetstatesandobservationsthatallowmulti-sensortobe[35].Apoint-process-basedfilte
6、rwasalsomulti-targetfilteringtofitintheunifyingrandomsetframeworkproposedin[47]toestimateanunknownbutfixedfordatafusion.Althoughthefoundationhasbeenestablishednumberoftargets.In[32],[33],and[41],ajumpintheformoffinitesetstatistics(FISST),itsrelationshiptoproce
7、sswascombinedwithstochasticdiffusionconventionalprobabilityisnotclear.Furthermore,optimalBayesianmulti-targetfilteringisnotyetpracticalduetoequationsonanon-Euclideanmanifoldtotrackatheinherentcomputationalhurdle.Eventheprobabilitytime-varyingnumberoftargets.Th
8、esameproblemhypothesisdensity(PHD)filter,whichpropagatesonlythefirstwithcontinuousstateevolutionandmarked-pointmoment(orPHD)insteadofthefullmulti-targetposterior,processobservation
此文档下载收益归作者所有