Rich-Club Phenomenon

Rich-Club Phenomenon

ID:39761687

大小:274.03 KB

页数:3页

时间:2019-07-11

Rich-Club Phenomenon_第1页
Rich-Club Phenomenon_第2页
Rich-Club Phenomenon_第3页
资源描述:

《Rich-Club Phenomenon》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEECOMMUNICATIONSLETTERS1TheRich-ClubPhenomenonInTheInternetTopologyShiZhouandRa´ulJ.Mondrag´onAbstract—WeshowthattheInternettopologyattheAu-Oneofthemainpropertiesofpower–lawnetworksisthattonomousSystem(AS)levelhasarich–clubphenomenon.Theasmallnumberofnodeshavel

2、argenumbersoflinks,wecallrichnodes,whichareasmallnumberofnodeswithlargethesenodes,richnodes.InthisletterweshowthattheASnumbersoflinks,areverywellconnectedtoeachother.Thegraphshowsarich–club,i.e.acoretier.Themembersoftherich–clubisacoretierthatwemeasuredusingtheri

3、ch–clubconnectivityandthenode–nodelinkdistribution.Weobtainedclubtendtobeverywellconnectedbetweeneachother,theythiscoretierwithoutanyheuristicassumptionbetweenthecreateatightgroupwhereiftwomembersoftheclubdoASes.Therich–clubphenomenonisasimplequalitativewaynotsha

4、realink,itisverylikelythattheyshareacommontodifferentiatebetweenpowerlawtopologiesandprovidesanodethatcanlinkthem,thatistheaveragehopdistanceiscriterionfornewnetworkmodels.Toshowthis,wecomparedbetweenoneandtwo.Also,wehavecomparedtherich–clubthemeasuredrich–clubof

5、theASgraphwithnetworksobtainedusingtheBarabasi–Albert(BA)scale–freenetworkmodel,the´measuredintheASgraphwiththeoneproducedbytheBAFitnessBAmodelandtheInet–3.0model.model,theFitnessBAmodel[6]andtheInet–3.0model,wherethesyntheticnetworksarecreatedtomodeltheASIndexTe

6、rms—Internet,topology,modeling,networks.graph.OurresultsshowthattheBAandFitnessBAmodeldonotcreatearich–club.TheInet–3.0modelcreatesarich–clubI.INTRODUCTIONbutwithadeficitinthenumberofcore–links.Noticethatinthisletter,wearenottryingtocharacterizealltheexistingHEana

7、lysisoftheInternettopologyattheAutonomouspower–lawnetworkgenerators,buttoshowthatitispossibleTSystem(AS)levelbyFaloutsosetal[1]showedthattodistinguishbetweenthembystudyingthepropertiesofthetheprobabilitythatanodehasklinkshasapower–lawrich–club.tailforlargek,follo

8、wingP(k)∝k−y,y=2.22.Subra-manianetal[2],usingaheuristicargumentbasedontheII.THEASGRAPHANDITSMODELScommercialrelationshipbetweenASes,foundthattheInternetA.ASGra

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。