LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)

LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)

ID:39755208

大小:264.84 KB

页数:32页

时间:2019-07-10

LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)_第1页
LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)_第2页
LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)_第3页
LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)_第4页
LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)_第5页
资源描述:

《LARGE GAPS BETWEEN CONSECUTIVE PRIME NUMBERS (2)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LARGEGAPSBETWEENCONSECUTIVEPRIMENUMBERSKEVINFORD,BENGREEN,SERGEIKONYAGIN,ANDTERENCETAOABSTRACT.LetG(X)denotethesizeofthelargestgapbetweenconsecutiveprimesbelowX.AnsweringaquestionofErd˝os,weshowthatlogXloglogXloglogloglogXG(X)>f(X),(logloglogX)2wheref(X)isafunctiontendingtoinfinitywithX.Ourproofco

2、mbinesexistingargumentswitharandomconstructioncoveringasetofprimesbyarithmeticprogressions.Assuch,werelyonrecentworkontheexistenceanddistributionoflongarithmeticprogressionsconsistingentirelyofprimes.CONTENTS1.Introduction12.Onarithmeticprogressionsconsistingofprimes53.Mainconstruction94.Probabil

3、ityestimates145.Linearequationsinprimeswithlargeshifts176.ProofofLemma2.1(i)197.ProofofLemma2.1(ii)238.Furthercommentsandspeculations26AppendixA.Linearequationsinprimes26References311.INTRODUCTIONarXiv:1408.4505v1[math.NT]20Aug2014WriteG(X)forthemaximumgapbetweenconsecutiveprimeslessthanX.Itiscle

4、arfromtheprimenumbertheoremthatG(X)>(1+o(1))logX,astheaveragegapbetweentheprimenumberswhichare6Xis∼logX.In1931,Westzynthius[30]provedthatinfinitelyoften,thegapbetweenconsecutiveprimenumberscanbeanarbitrarilylargemultipleoftheaveragegap,thatis,G(X)/logX→∞asX→∞.Moreover,heprovedthequalitativebound1l

5、ogXlog3XG(X)≫.log4X1Asusualinthesubject,log2x=loglogx,log3x=logloglogx,andsoon.Theconventionsforasymptoticnotationsuchas≪ando()willbedefinedinSection1.2.12KEVINFORD,BENGREEN,SERGEIKONYAGIN,ANDTERENCETAOIn1935Erd˝os[9]improvedthistologXlog2XG(X)≫(log3X)2andin1938Rankin[25]madeasubsequentimprovement

6、logXlog2Xlog4XG(X)>(c+o(1))(log3X)2withc=1.Theconstantcwassubsequentlyimprovedseveraltimes:to1eγbySch¨onhage[27],thento32c=eγbyRankin[26],c=1.31256eγbyMaierandPomerance[23]and,mostrecently,c=2eγbyPintz[24].Ouraiminthispaperistoshowthatccanbetakenarbitrarilylarge.Theorem1.LetR>0.Thenforanysufficien

7、tlylargeX,thereareatleastlogXlog2Xlog4XR(log3X)2consecutivecompositenaturalnumbersnotexceedingX.Inotherwords,wehavelogXlog2Xlog4XG(X)>f(X)(log3X)2forsomefunctionf(X)thatgoestoinfinityasX→∞.Theorem1settlesintheaffirmative

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。