欢迎来到天天文库
浏览记录
ID:39707195
大小:74.50 KB
页数:8页
时间:2019-07-09
《《你能证明它们吗》参考教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第一章证明(二)§1.1、你能证明它们吗(一)课型:新授课备课时间:一、教学目标:1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的性质定理和判定定理。3、结合实例体会反证法的含义。二、教学重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。教学难点:能够用综合法证明等腰三角形的性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。三、教学方法:观察法。四、教学过程:复习:1、什么是等腰三角形?2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、
2、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。同学们和我一起来回忆上学期学过的公理w本套教材选用如下命题作为公理:w1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;w2.两条平行线被第三条直线所截,同位角相等;w3.两边夹角对应相等的两个三角形全等;(SAS)w4.两角及其夹边对应相等的两个三角形全等;(ASA)w5.三边对应相等的两个三角形全等;(SSS)w6.全等三角形的对应边相等,对应角相等.由公理5、3、4、6可容易证明下面的推论:推论
3、 两角及其中一角的对边对应相等的两个三角形全等。(AAS)8/8证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:△ABC≌△DEF证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F又∵BC=EF(已知)∴△ABC≌△DEF(ASA)(这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。)议一议:(1)还记得我们探索过的等腰三角形的性质吗?(教师提出问题,并利用等腰三角形纸片帮议助学生回忆。学生充分讨论
4、问题1,借助等腰三角形纸片回忆有关性质。)(2)你能利用已有的公理和定理证明这些结论吗?(等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。)定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。求证:∠B=∠C(引导学生证明定理“等腰三角形的两个底角相等”,重点引导学生做辅助线,将等腰三角形分成两个全等的三角形:我们刚才利用折叠的方法说明了这两个底角相等。实际上,折痕将等腰三角形分成了两个全等三角形。能否通过作一条线段,得到两个全等的三角形,从而证明这两个底角相等呢?)证明:取BC的
5、中点D,连接AD。∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD(SSS)∴∠B=∠C(全等三角形的对应边角相等)8/8(让同学们通过探索、合作交流找出其他的证明方法。做∠BAC的平分线,交BC边于D;过点A做AD⊥BC。。学生指出该定理的条件和结论,写出已知、求证,画出图形,并选择一种方法进行证明。)想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?(应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。)推论等腰三角形的顶角的平分线、
6、底边上的中线、底边上的高互相重合。随堂练习:做教科书第4页第1,2题。(引导学生分析证明方法,学生动手证明,写出证明过程。)课堂小结:通过这节课的学习你学到了什么知识?(学生小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。)五、作业:1、基础作业:P5页习题1.11、2。2、预习作业:P5-6页议一议六、板书设计:§1.1、你能证明它们吗(一)公理:SASASASSS推论:AAS三线合一对应相等的两个三角形全等。(AAS)七、教学反思:8/8§
7、1.1、你能证明它们吗(二)课型:新授课备课时间:一、教学目标:1、进一步了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。3、能够用综合法证明等腰三角形的判定定理。4、了解反证法的推理方法。5、会运用“等角对等边”解决实际应用问题及相关证明问题。二、教学重点:正确叙述
此文档下载收益归作者所有