欢迎来到天天文库
浏览记录
ID:39665332
大小:25.50 KB
页数:4页
时间:2019-07-08
《数学人教版九年级上册点与圆、直线与圆、圆与圆的位置关系》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、点与圆、直线与圆、圆与圆的位置关系整合教学目标(一)教学知识点1.进一步理解和掌握点与圆、直线与圆、圆与圆的位置关系.2.不同位置关系所体现的数量关系,为以后与圆有关的计算、证明做铺垫.(二)能力训练要求1.经历探索点与圆、直线与圆、圆与圆位置关系的过程,培养学生的探索能力.2.通过观察得出“圆心到直线的距离d和半径r的数量关系”的对应与等价,从而实现位置关系与数量关系的相互转化.(三)情感与价值观要求通过探索点与圆、直线与圆、圆与圆位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的
2、确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点经历探索点与圆、直线与圆、圆与圆位置关系的过程.理解点与圆、直线与圆、圆与圆的位置关系.掌握其对应与等价。教学难点:经历探索点与圆、直线与圆、圆与圆位置关系的过程,归纳总结出三种位置关系下的对应与等价.教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?通过观看ppt课件,谈谈射击是如何计算成绩的?[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于
3、半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.[师]根据点和圆的位置关系,同学们能否说出d与r之间的数量关系呢?试试看.Ⅱ.新课讲解1.复习点到直线的距离的定义[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.如图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.2.探
4、索直线与圆的三种位置关系[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系.[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?[生]有三种位置关系:[师]直线和圆有三种位置关系,如下图:它们分别
5、是相交、相切、相离.当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangentline).当直线与圆有两个公共点时,叫做直线和圆相交.当直线与圆没有公共点时,叫做直线和圆相离.因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?[生]当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离.[师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的
6、关系来确定三种位置关系呢?[生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系.[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.投影片(§3.5.1A)(1)从公共点的个数来判断:直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.(2)从点到直线的
7、距离d与半径r的大小关系来判断:d<r时,直线与圆相交;d=r时,直线与圆相切;d>r时,直线与圆相离.Ⅲ.播放ppt,观察圆与圆之间的五种位置关系,根据公共点的个数,进一步体会d与r之间的数量关系。探究圆与圆的位置关系和判别方法,学生通过类比、分类、数形结合,体会从不同的角度考虑事物的特点。判别圆与圆的位置关系的方法与判别直线与圆的位置的方法类似,因此本节课首先复习了直线与圆的位置关系,然后通过让学生动手操作,充分感受两圆位置的变化,猜测两圆可能存在的位置关系,经过讨论,归纳确定两圆位置关系的各种情况.通过
8、直观感受可以得出由“公共点的个数”可以知道两圆的位置关系。在两圆位置关系相应的“数量关系”的研究中,先把课本上“读一读”的内容穿插在其中,因为只有认知了“两圆相切,切点在两圆的连心线上”,才能研究圆心到直线的距离d与两圆半径R、r的数量关系。在五种位置关系相应的数量关系的研究中,我采用“先易后难,突破关键”的教学策略.先让学生解决易于解决的“外切”、“内切”、“外离”时的三量的数量关系,再解决“内含
此文档下载收益归作者所有