欢迎来到天天文库
浏览记录
ID:39657373
大小:24.82 KB
页数:3页
时间:2019-07-08
《数学人教版九年级上册22.1.1 二次函数》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第1课时教学内容22.1.1 二次函数.教学目标1.理解二次函数的概念,掌握二次函数的形式.2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.3.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系模型的过程,发展概括及分析问题、解次问题的能力.4.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.教学重点理解二次函数y=ax2+bx+c(a、b、c)是常数,且a≠0的概念.教学难点教材中涉及的实际问题有的较为复杂,要求学生有较强的抽象概括能
2、力.教学过程一、导入新课正方体的六个面是全等的正方形(下图),设正方体的棱长为x,表面积为y.如果改变正方体的棱长x,那么正方体的表面积y会随之改变,y与x之间有什么关系?教师引导学生思考问题,列出方程.导入新课的教学.二、新课教学显然,对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为y=6x2.问题1n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?每个队要与其他(n-1)个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数m=n(n-1),即m=n2-n.这个函数
3、解析式表示比赛的场次数m与球队数n的关系,对于n的每一个值,m都有一个对应值,即m是n的函数.问题2某种产品现在的年产量是20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?这种产品的原产量是20t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)(1+x)t,即两年后的产量y=20(1+x)2,即y=20x+40x+40.这个函数解析式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有一个对应值,即y是x的函数.思考
4、:函数y=6x2、m=n2-n、y=20x+40x+40有什么共同特点?在上面的问题中,函数都是用自变量的二次式表示的.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.三、巩固练习教材第29页练习1、2.四、课堂小结今天你学习了什么?二次函数的概念是什么?五、布置作业习题22.1第1、2题.
此文档下载收益归作者所有