欢迎来到天天文库
浏览记录
ID:39656879
大小:44.61 KB
页数:7页
时间:2019-07-08
《数学人教版九年级上册21.1.1 一元二次方程》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、21.1.1一元二次方程教学目标1.1知识与技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。1.2过程与方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.1.3情感态度与价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重难点2.1教学重点一元二次方程的定义、各项系数的辨别,根的作用.2.2教学难点根的作用的理解.教学工具多媒体,教学用直尺、三角板、圆规、量角器、小黑板教学过程一、引入新课创设问题情境,激发
2、学生兴趣,引出本节内容活动一:[1]情境引入1.要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米? 2.如图,有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形? 学生通过分析设出合适的未知数,列出方程.问题1考虑从不同角度列方程,角度一:等量关系是底面的长×宽等于底面积,设切去的正方形的边长是xcm,则有方程(100-2x)(50-2x)=3
3、600;角度二:等量关系是底面积等于大长方形的面积减去四个小正方形的面积,再减去四个长方形的面积,同样设正方形的长是xcm,则有方程x2-75+350=0通过整理得到方程.二、新知介绍活动二:[2]要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?分析:全部比赛共28场,若设邀请x个队参赛,每个队要与其他(x-1)个队各赛一场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场,于是得到方程经过整理得到方程x2-x-56=0教师应注意:(1)学生对列方程解应用问题
4、的步骤是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.说明:由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.活动三:[2]探索新知观察下列得到的方程:(1)x2-75x+350=0(2)x2-x-56=0(3)x(x-1)=28学生活动:请口答下面问题.(1)上面几个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?结论:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.归纳定义:等号两边都是
5、整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一元二次方程的一般形式是:ax2+bx+c=0(a≠0).其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.思考:为什么规定a≠0强调:一元二次方程定义中的三个条件:(1)是整式方程,(2)含有一个未知数,(3)未知数的最高次数是2,三个条件缺一不可说明:主体活动,探索一元二次方程的定义及其相关概念.[3]例题讲解[例1]判断下列方程是否为一元二次方程(1)2x+3=5x-2(2)x2=4(3)(4)同步练习1下列方程那些是一元二次方程?1、5x-2=x+1
6、2、7x2+6=2x(3x+1)3、x2=74、6x2=x5、2x2=5y6、-x2=0同步练习2一元一次方程与一元二次方程有什么区别与联系?[4]新知应用例:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并指出各项系数.解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数是3,一次项系数是-8,常数项是-10.学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).同步练习3练习:将下
7、列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:1)2)(x-2)(x+3)=83)同步练习4方程(2a—4)x2—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?解:当a≠2时是一元二次方程;当a=2,b≠0时是一元一次方程;[5]课堂总结在今天这节课上,你有什么样的收获呢?有什么感想?1.一元二次方程的定义2.一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)3.一元二次方程中的为二次项ax2,a为二次项系数;一次项为bx,一次项系数为
此文档下载收益归作者所有