欢迎来到天天文库
浏览记录
ID:39656849
大小:18.00 KB
页数:3页
时间:2019-07-08
《数学人教版九年级上册21.1 一元二次方程概念》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、21.1一元二次方程的概念一、学习目标1、理解一元一次方程的概念:会把一元二次方程及整理成一般式ax2+bx+c=0(a≠0),能分清二次项及其系数、一次项及其系数与常数项等概念。能说清为什么a≠0。2、了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.3、会根据具体问题列出一元二次方程,体会方程的模型思想,提高分析问题的能力。二、重难点分析重点:了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点:一元二次方程一般形式的整理及其二次项系数、一次项系数和常数项的识别.三、教学过程活动1 复习旧知1.什么是
2、方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.(1)2x-1 (2)mx+n=0 (3)+1=0 (4)x2=13.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.A.0 B.1 C.2 D.3活动2 探究新知根据题意列方程.1.教材第2页 问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.2.教材第2页 问题2.提出问题:(1)本题中有哪些量?由这些
3、量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3 归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有______
4、__个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2
5、=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页 例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0B.x2-x-2=0C.x2+x+2=0D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程
6、,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页 练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.活动5 课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页 习题21.1第1~7题.教学设计说明 本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式
7、、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重重难点的体现。在本节课的活动1中,利用学生复习熟悉的一元一次方程,让学生顺利过渡到后面的问题。活动2中让学生观察活动1中得到的3个方程,并通过类比一元一次方程的定义和一般形式,从而获得本课的新知识。活动3意在强化学生所学知识,并运用到实际问题中去。教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。
此文档下载收益归作者所有