《次数学危机》PPT课件

《次数学危机》PPT课件

ID:39597249

大小:310.10 KB

页数:13页

时间:2019-07-06

《次数学危机》PPT课件_第1页
《次数学危机》PPT课件_第2页
《次数学危机》PPT课件_第3页
《次数学危机》PPT课件_第4页
《次数学危机》PPT课件_第5页
资源描述:

《《次数学危机》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二次数学危机及其克服——07数教黄建辉46号第二次数学危机十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。而这次的危机是由牛顿学派的外部、贝克莱大主教提出的,是对牛顿“无穷小量”说法的质疑引起的。一、危机的出现17世纪数学史上出现了一个崭新的数学分支——数学分析,或称微积分。微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。由无穷小量究竟是不是零的问题引起了极大的争论,从而引发了第二次数学危机。牛顿的“无穷小”牛顿的「无穷小量」无穷小量在牛顿的微积分中的主要运用。无穷小量的数学推导过程在逻辑上自相矛盾。也正因为他的逻辑上不严

2、格,而遭到责难。牛顿(IsaccNewton,1642—1727)英国数学家、天文学家和物理学家微积分受到攻击与责难十八世纪的数学家对待微积分发展的态度。对这些基础问题的讨论不感兴趣。认为所谓的严密化就是烦琐。在微积分的发展过程中,出现了两种不荣乐观的局面。微积分的基础问题受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。贝克莱的发难贝克莱,18世纪英国哲学家,西方近代主观唯心主义哲学的主要代表。他对微积分强有力的批评,在数学界产生了最令人震撼的撞击。1734年,贝克莱以“渺小的哲学家”之名出版了一本针对微积分基础的书——《分析学家》。在这本书中,贝克莱对牛顿的理论进

3、行了攻击。他指责牛顿“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的鬼魂”。贝克莱的攻击真正抓住了牛顿理论中的缺陷,是切中要害的。这使得数学家在将近200年的时间里,不能彻底反驳贝克莱的责难。直至柯西创立极限理论,才较好地反驳了贝克莱的责难。直至魏尔斯特拉斯创立“”语言,才彻底地反驳了贝克莱的责难。贝克莱1685年3月12日出生于爱尔兰基尔肯尼郡1753年1月14日卒于牛津。实践是检验真理的唯一标准应当承认,贝克莱的责难是有道理的。“无穷小”的方法在概念上和逻辑上都缺乏基础。牛顿和当时的其它数学家并

4、不能在逻辑上严格说清“无穷小”的方法。数学家们相信它,只是由于它使用起来方便有效,并且得出的结果总是对的。特别是像海王星的发现那样鼓舞人心的例子,显示出牛顿的理论和方法的巨大威力。所以,人们不大相信贝克莱的指责。这表明,在大多数人的脑海里,“实践是检验真理的唯一标准。”二、危机的实质第二次数学危机的实质是什么?应该是数学思想的不严密的、直观的、强调形式的计算,而不管基础的可靠与否,也就是说,微积分理论缺乏逻辑基础。其实,在牛顿把瞬时速度说成“物体所走的无穷小距离与所用的无穷小时间之比”的时候,这种说法本身就是不明确的,是含糊的。当然,牛顿也曾在他的著作中说明,然提出和使用了“极限”这个

5、词,但并没有明确说清这个词的意思。德国的莱布尼茨虽然也同时发明了微积分,但是也没有明确给出极限的定义。正因为如此,此后近二百年间的数学家,都不能满意地解释贝克莱提出的悖论。所以,由“无穷小”引发的第二次数学危机,实质上是缺少严密的极限概念和极限理论作为微积分学的基础。三、危机的解决进入19世纪,历史要求给微积分以严格的基础。终于在数学家们的共同努力下,到19世纪末,分析的严格化问题得到了解决。第一个为补救第二次数学危机提出真正有见地的意见的是达朗贝尔。他在1754年指出,必须用可靠的理论去代替当时使用的粗糙的极限理论。到了19世纪,出现了一批杰出的数学家,他们积极为微积分的奠基工作而努

6、力。首先要提到的是捷克的哲学家和数学家波尔查诺,他开始将严格的论证引入到数学分析中。1816年,他在二项展开公式的证明中,明确提出了级数收敛的概念,同时对极限、连续和变量有了较深入的理解。达朗贝尔(法)波尔查诺分析学的奠基人,公认是法国的多产的数学家柯西,柯西在数学分析和置换群理论方面作了开拓性的工作,是最伟大的近代数学家之一。柯西在1821~1823年间出版的《分析教程》和《无穷小计算讲义》是数学史上划时代的著作,在那里,他给出了数学分析一系列基本概念的精确定义。例如,他给出了精确的极限定义,然后用极限定义连续性、导数、微分、定积分和无穷级数的收敛性。柯西接着,魏尔斯特拉斯建立了实数

7、系,创造了精确的“”语言戴德金,康托尔等又将实数理论严密化。分析有了严密的基础和完整的体系微积分学。无论是基本概念,还是在逻辑严密性、形式严谨性上,都有欧氏几何学一般的令人赞叹!由贝克莱悖论所引发的第二次数学危机宣告彻底解决了。在微积分创建200余年后,数学家们终于赢来了胜利凯旋之日。谢谢观看!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。