欢迎来到天天文库
浏览记录
ID:39586517
大小:746.50 KB
页数:12页
时间:2019-07-06
《高三数学复习——概率统计的解题技巧》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高三数学概率统计的解题技巧【命题趋向】概率统计命题特点:1.在近五年高考中,新课程试卷每年都有一道概率统计解答题,并且这五年的命题趋势是一道概率统计解答题逐步增加到一道客观题和一道解答题;从分值上看,从12分提高到17分;由其是实施新课标考试的省份,增加到两道客观题和一道解答题.值得一提的是此类试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等
2、,所以在概率统计复习中要注意全面复习,加强基础,注重应用.2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率与统计还将在选择与填空中出现,可能与实际背景及几何题材有关.【考点透视】1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互
3、独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n次独立重复试验中恰好发生k次的概率.5.掌握离散型随机变量的分布列.6.掌握离散型随机变量的期望与方差.7.掌握抽样方法与总体分布的估计.8.掌握正态分布与线性回归.【例题解析】考点1.求等可能性事件、互斥事件和相互独立事件的概率。解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)==;等可能事件概率的计算步骤:1.计算一次试验的基本事件总数;2.设所求事件A,并计算事件A包含的基本事件的个数;3.依公式求值;4.答,即给问题
4、一个明确的答复.(2)互斥事件有一个发生的概率:P(A+B)=P(A)+P(B);特例:对立事件的概率:P(A)+P()=P(A+)=1.(3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);特例:独立重复试验的概率:Pn(k)=.其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算即是至少有一个发生,还是同时发生,
5、分别运用相加或相乘事件.高三数学第三步,运用公式求解第四步,答,即给提出的问题有一个明确的答复.计数原理与排列组合要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。3.排列(1)排列定义,排列数(2)排列数公式:系==n·(n-1)…(n-m+1);(3)全排列列:=n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区
6、别;(2)组合数公式:Cnm==;(3)组合数的性质①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;6.二项式的应用(1)求某些多项式系数的和;(2)证明一些
7、简单的组合恒等式;(3)证明整除性。①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;(4)近似计算。当
8、x
9、充分小时,我们常用下列公式估计近似值:高三数学①(1+x)n≈1+nx;②(1+x)n≈1+nx+x2;(5)证明不等式。例1.在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为.例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):49
10、2496494495498497501502504496497503506508507492496500501499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为__________.例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)例5.从某批产品中,有放回地抽取产品二次,每次随机抽取
此文档下载收益归作者所有