用函数的观点看一元二次方程

用函数的观点看一元二次方程

ID:39574991

大小:2.02 MB

页数:27页

时间:2019-07-06

用函数的观点看一元二次方程_第1页
用函数的观点看一元二次方程_第2页
用函数的观点看一元二次方程_第3页
用函数的观点看一元二次方程_第4页
用函数的观点看一元二次方程_第5页
资源描述:

《用函数的观点看一元二次方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、回顾旧知二次函数的一般式:(a≠0)______是自变量,____是____的函数。xyx当y=0时,ax²+bx+c=0ax²+bx+c=0这是什么方程?一元二次方程与二次函数有什么关系?教学目标【知识与能力】总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根。会利用二次函数的图象求一元二次方程的近似解。通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想。【情感态度与价值观】【过程与方法】

2、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。教学重难点二次函数与一元二次方程之间的关系。利用二次函数图像求一元二次方程的实数根。一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。利用二次函数的图象求一元二次方程的近似解。以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m

3、?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?实际问题解:(1)当h=15时,20t–5t2=15整理,得t2-4t+3=0解得t1=1,t2=3当球飞行1s和3s时,它的高度为15m.1s3s15m(2)当h=20时,20t–5t2=20整理,得t2-4t+4=0解得t1=t2=2当球飞行2s时,它的高度为20m.2s20m(3)当h=20.5时,20t–5t2=20.5整理,得t2-4

4、t+4.1=0因为(-4)2-4×4.1<0,所以方程无实根。球的飞行高度达不到20.5m.20.5m(4)当h=0时,20t–5t2=0t2-4t=0t1=0,t2=4当球飞行0s和4s时,它的高度为0m,即0s时,球从地面飞出,4s时球落回地面。0s4s0m已知二次函数,求自变量的值解一元二次方程的根二次函数与一元二次方程的关系(1)下列二次函数的图象与x轴有交点吗?若有,求出交点坐标.(1)y=2x2+x-3(2)y=4x2-4x+1(3)y=x2–x+1探究xyo令y=0,解一元二次方程的

5、根(1)y=2x2+x-3解:当y=0时,2x2+x-3=0(2x+3)(x-1)=0x1=,x2=1-32所以与x轴有交点,有两个交点。xyoy=a(x-x1)(x-x1)二次函数的两点式(2)y=4x2-4x+1解:当y=0时,4x2-4x+1=0(2x-1)2=0x1=x2=所以与x轴有一个交点。12xyo(3)y=x2–x+1解:当y=0时,x2–x+1=0所以与x轴没有交点。xyo因为(-1)2-4×1×1=-3<0确定二次函数图象与x轴的位置关系解一元二次方程的根二次函数与一元二次方程

6、的关系(2)有两个根有一个根(两个相同的根)没有根有两个交点有一个交点没有交点b2–4ac>0b2–4ac=0b2–4ac<0二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系ax2+bx+c=0的根y=ax2+bx+c的图象与x轴若抛物线y=ax2+bx+c与x轴有交点,则________________。b2–4ac≥0△>0△=0△<0oxy△=b2–4ac课堂小结二次函数y=ax2+bx+c的图象和x轴交点的三种情况与一元二次方程根的关系:二次函数y=ax2+bx

7、+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根只有一个交点有两个相等的实数根没有交点没有实数根b2–4ac>0b2–4ac=0b2–4ac<0随堂练习1.不与x轴相交的抛物线是()A.y=2x2–3B.y=-2x2+3C.y=-x2–3xD.y=-2(x+1)2-32.若抛物线y=ax2+bx+c=0,当a>0,c<0时,图象与x轴交点情况是()A.无交点B.只有一个交点C.有两个交点D.不能确定DC

8、3.如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=___,此时抛物线y=x2-2x+m与x轴有__个交点.4.已知抛物线y=x2–8x+c的顶点在x轴上,则c=__.11165.若抛物线y=x2+bx+c的顶点在第一象限,则方程x2+bx+c=0的根的情况是_____.无实数根6.抛物线y=2x2-3x-5与y轴交于点____,与x轴交于点.7.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。