资源描述:
《滤波法在图像处理中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、滤波法在图像处理中的应用所谓数字图像处理就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。实质上是一段能够被计算机还原显示和输出为一幅图像的数字码。21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。数字图像处理,即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管
2、人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。另一方面,通过数字图像处理中的模式识别技术,可以将人眼无法识别的图像进行分类处理。通过计算机模式识别技术可以快速准确的检索、匹配和识别出各种东西。 数字图像处理技术已经广泛深入地应用于国计民生休戚相关的各个领域。 在计算机中,按照颜色和灰度的多少可以将图像争为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。目前,大多数图像处理软件都支持这四种类型的图像。平滑技术用于平滑图像中的噪声。平滑噪声可以在空间域中进行,基本方法是求
3、像素灰度均值或者中值。1.首先我们来了解下滤波法的定义。答:滤波的本义是指信号有各种频率的成分,滤掉不想要的成分,即为滤掉常说的噪声,留下想要的成分.这即是滤波的过程,也是目的. 一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。2.对滤波处理的要求有两条:答:一是不能损坏图像的轮廓及边缘等重要信息;二是使图像清晰视觉效果好。3.我们为什么要滤波。答:滤波的本义是指信号有各种频率的成分,滤掉不想要的成分,即为滤掉常说的噪声,留下想要的成分.这即是滤波的过程,也是目的。一是抽出对象的特征作为图像识别的特征模
式;另一个是为适应图像处理的
4、要求,消除图像数字化时所混入的噪声。在各种图像的采集、获取、传送和转换(如成像、复制扫描、传输以及显示等)过程中,均处在复杂的环境中,光照、电磁多变,所有的图像均不同程度地被可见或不可见的噪声干扰。噪声源包括电子噪声、光子噪声、斑点噪声和量化噪声。如果信噪比低于一定的水平,噪声逐渐变成可见的颗粒形状,导致图像质量的下降。除了视觉上质量下降,噪声同样可能掩盖重要的图像细节,在对采集到的原始图像做进一步的分割处理时,我们发现有一些分布不规律的椒盐噪声,为此采取相应的对策就是对图像进行必要的滤波降噪处理。编辑本段滤波的方法和归类 图像的噪声滤波器有很多种,常用的有线性滤波器,非线性滤波器。
5、采用线性滤波如邻域平滑滤波,对受到噪声污染而退化的图像复原,在很多情况下是有效的。但大多数线性滤波器具有低通特性,去除噪声的同时也使图像的边缘变模糊了。而另一种非线性滤波器如中值滤波,在一定程度上可以克服线性滤波器所带来的图像模糊问题,在滤除噪声的同时,较好地保留了图像的边缘信息。邻域平滑滤波原理 邻域平均法[2]是一种利用Box模版对图像进行模版操作(卷积运算)的图像平滑方法,所谓Box模版是指模版中所有系数都取相同值的模版,常用的3×3和5×5模版如下: 邻域平均法的数学含义是: (式4-1) 式中:x,y=0,1,…,N-1;S是以(x,y)为中心的邻域的集合,M是S内的
6、点数。 邻域平均法的思想是通过一点和邻域内像素点求平均来去除突变的像素点,从而滤掉一定噪声,其优点是算法简单,计算速度快,其代价会造成图像在一定程度上的模糊。中值滤波原理中值滤波[2]就是用一个奇数点的移动窗口,将窗口的中心点的值用窗口内的各点中值代替。假设窗口内有五点,其值为80、90、200、110和120,那么此窗口内各点的中值
及为110。设有一个一维序列f1,f2,…,fn,取窗口长度(点数)为m(m为奇数),对其进行中值滤波,就是从输入序列中相继抽出m个数fi-v,…,fi-1,fi,fi+1,…,fi+v(其中fi为窗口中心值,v=(m-
1)/2),再将这m个点按其数
7、值大小顺序排序,取其序号的中心点的那个数作为滤波输出。数学公式表示为: Yi=Med{fi-v,…,fi-1,fi,fi+1,…,fi+v}i∈Nv=(m-1)/2(式4-2) Yi称为序列fi-v,…,fi-1,fi,fi+1,…,fi+v的中值 例如,有一序列{0,3,4,0,7},重新排序后为{0,0,3,4,7}则Med{0,0,3,4,7}=3。此列若用平滑滤波,窗口也取5,那么平滑滤波输出为(0+3+4+0+7)/5=2.8。