欢迎来到天天文库
浏览记录
ID:39558815
大小:1.05 MB
页数:21页
时间:2019-07-06
《毕业论文《二阶常微分方程解的存在问题分析》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二阶常微分方程解的存在问题分析摘要本文首先介绍了二阶常系数齐次线性微分方程的一般解法——特征方程法及二阶常系数非齐次线性微分方程的待定系数法,然后又介绍了一些可降阶的微分方程类型。接着,讨论了二阶变系数微分方程的幂级数解法并论述了如何利用变量代换法将某些变系数方程化为常系数方程。另外,本文还介绍了求解初值问题的另一种方法——拉普拉斯变换法。最后,给出了二阶微分方程的存在唯一性定理的证明以及它在科学研究、工程技术以及数学建模中解决实际问题的一些应用。1.引言1.1常微分方程的发展过程与研究途径二阶线性微分方程是常微分方程中一类很重要的
2、方程。这不仅是因为其一般理论已经研究地比较清楚,而且还因为它是研究非线性微分方程的基础,在工程技术和自然科学中有着广泛的应用。在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题。因此,研究不同类型的二阶常微分方程的求解方法及探讨其解的存在唯一性问题是十分重要的。常微分方程已有悠久的历史,而且继续保持着进一步发展的活力,主要原因是它的根源深扎在各种实际问题之中。牛顿最早采用数学方法研究二体问题,其中需要求解的运动方程就是常微分方程。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为
3、平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。20世纪30年代直至现在,是常微分方程各个领城迅速发展、形成各自相对独立的而又紧密联在一起的分支学科的时期。1927-1945年间定性理论的研究主要是跟无线电技术联系在一起的。第二次世界大战期间由于通讯等方面的要求越来越高,大大地激发了对无线电技术的研究,特别是非线性振动理论的研究得到了迅速的发展。40年代后数学家们的注意力主要集中在抽象动力系统的拓扑特征,如闭轨是否
4、存在、结构是否稳定等,对于二维系统已证明可以通过奇点及一些特殊的闭轨和集合来判断结构稳定性与否;而对于一般系统这个问题尚未解决。在动力系统理论方面,我国著名数学家廖山涛教授,用从典范方程组到阻碍集一整套理论和方法,解决了一系列主要问题,特别是C’封闭引理的证明,对结构稳定性的充要条件等方面都作出了主要贡献。1.2问题的研究现状在当代由电力网、城市交通网、自动运输网、数字通讯网、灵活批量生产网、复杂的工业系统、指令控制系统等提出大系统的数学模型是常微分方程组描述的。对这些系统的稳定性研究,引起了越来越多学者的兴趣,但目前得到的成果仍然
5、只是初步的。常微分方程的概念、解法和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。21求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。 后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们
6、已把研究重点转移到定解问题上来。 一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。存在和唯一性定理对于微分方程的求解是十分重要的。由于大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。微分方程的近似解法(包括数值解法)具有十分重要的实际意义,而解的存在和唯一又是进行近似计算的前提。因为如果解根本不存在,却要去近似地求它,问题本身是没有意义的;如果有解存在而不唯一,由于不知道要确定是哪一个解,却要去近似地确定
7、它,问题也是不明确的。解的存在唯一性定理保证了所要求的解的存在和唯一,因此它也是近似求解的前提和理论基础。此外,我们将看到在定理的证明中还具体地提出了求近似解的途径,这就更增添了存在唯一性定理的实用意义。由于种种条件的限制,实际测出的初始数据往往是不精确的,它只能近似地反映初始状态。因此我们以它作为初值条件所得到的解是否能用做真正的解呢?这就产生了解对初值的连续依赖性问题,即当初值微小变动时,方程的解的变化是否也是很小呢?如果不然的话,这样所求得的解就失去了实用的意义,因为它可能与实际情况产生很大的误差。在科学研究、工程技术中,常常
8、需要将某些实际问题转化为二阶常微分方程问题,因此,研究不同类型的二阶常微分方程的求解方法及探讨其解的存在唯一性问题,是十分重要的。1.3问题研究存在的不足与前景现今对于二阶线性微分方程的研究已经取得了不少成就,尤其在二阶常系数线性微分
此文档下载收益归作者所有