必修二点线面之间的位置关系

必修二点线面之间的位置关系

ID:39557818

大小:1.31 MB

页数:27页

时间:2019-07-06

必修二点线面之间的位置关系_第1页
必修二点线面之间的位置关系_第2页
必修二点线面之间的位置关系_第3页
必修二点线面之间的位置关系_第4页
必修二点线面之间的位置关系_第5页
资源描述:

《必修二点线面之间的位置关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章点线面之间的位置关系2.1.1平面一、学习目标:知识与技能:利用生活中的实物对平面进行描述;掌握平面的表示法及水平放置的直观图;掌握平面的基本性质及作用;培养学生的空间想象能力。过程与方法:通过共同讨论,增强对平面的感性认识;归纳整理本节所学知识情感态度与价值观:认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。二、学习重、难点学习重点:1、平面的概念及表示;2、平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言。学习难点:平面基本性质的掌握与运用。三、使用说明及学法指导:通过阅读教材,联系身边的实物思考、交流,从而较好地

2、完成本节课的学习目标。四、知识链接:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?五、学习过程:A问题1、平面含义A问题2、平面的画法A问题3、平面的表示平面通常用希腊字母()等表示,如()等,也可以用表示平面的平行四边形的()来表示,如()等。如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成()A问题4、点与平面的关系:平面内有无数个点,平面可以看成点的集合。点A在平面α内,记作:点B在平面α外,记作:A例1、判断下列各题的说法正确与否,在正确的说法的题号后打√,否则打×:1)

3、、一个平面长4米,宽2米;()2)、平面有边界;()3)、一个平面的面积是25cm2;()4)、菱形的面积是4cm2;()5)、一个平面可以把空间分成两部分.()A问题5如果直线l与平面α有一个公共点,直线l是否在平面α内?如果直线l与平面α有两个公共点呢?·BA问题6公理1:符号表示为公理1作用:判断直线是否在平面内B问题C·B·A·α7公理2:符号表示为:公理2作用:确定一个平面的依据。注意:(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形惟一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是

4、有的,而且只有一个”,也即不共线的三点确定一个平面.“有且只有一个平面”也可以说成“确定一个平面.B问题P·αLβ8公理3:符号表示为:公理3作用:判定两个平面是否相交的依据B例题教材P43例1六、达标训练B课本P43练习1、2、3、4①为什么有的自行车后轮旁只安装一只撑脚?②三角形、梯形是否一定是平面图形?为什么?③四条线段顺次首尾连接,所得的图形一定是平面图形吗?为什么?④用符号表示下列语句,并画出图形:⑴点A在平面α内,点B在平面α外;⑵直线L在平面α内,直线m不在平面α内;⑶平面α和β相交于直线L⑷直线L经过平面α外一点P和平面α内一点Q;

5、⑸直线L是平面α和β的交线,直线m在平面α内,和m相交于点P.2.1.2空间直线与直线的位置关系1一、学习目标:知识与技能:1.掌握空间两条直线的位置关系,理解异面直线的概念。2.理解并掌握公理4,并能运用它解决一些简单的几何问题。过程与方法:培养空间想象力。情感态度与价值观:通过对空间直线间不同位置关系的理解、运用和展示,体会数学世界的美妙,培养学生的美学意识。二、学习重、难点学习重点:异面直线的概念、公理4学习难点:异面直线的概念三、使用说明及学法指导:通过阅读教材,联系身边的实物思考、交流,从而较好地完成本节课的教学目标。四、知识链接:平面的

6、基本性质及其简单的应用——共面问题、点共线问题、线共点问题的证明,同一平面内两条直线有几种位置关系?相交直线——有且仅有一个公共点平行直线——在同一平面内,没有公共点五、学习过程:A问题1空间中的两条直线又有怎样的位置关系呢?观察教室内日光灯管所在直线与黑板的左右侧所在的直线;天安门广场上旗杆所在的直线与长安街所在的直线,南京万泉河立交桥的两条公路所在的直线,它们的共同特征是什么?ABA’B’C’D’′′′′CD思考:如下图,长方体ABCD-A′B′C′D′中,线段AB′所在直线与线段CC′所在直线的位置关系如何?A问题2:归纳总结,形成概念异面直

7、线:A问题3:空间中两条直线的位置关系有三种B问题4判断:下列各图中直线l与m是异面直线吗?123456B问题5辨析①、空间中没有公共点的两条直线是异面直线②、分别在两个不同平面内的两条直线是异面直线③、不同在某一平面内的两条直线是异面直线④、平面内的一条直线和平面外的一条直线是异面直线⑤、既不相交,又不平行的两条直线是异面直线A例1:如图2.1.2-1,在正方体中,哪些棱所在的直线与成异面直线?          图2.1.2-1B问题6如右图所示是一个正方体的展开图,如果将它还原成正方体,那么AB、CD、EF、GH这四条线段所在的直线是异面直线

8、的有几对?A问题7.思考:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线平行。空间中,如果两条直线都与第三条

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。