欢迎来到天天文库
浏览记录
ID:39553211
大小:174.50 KB
页数:8页
时间:2019-07-06
《初三数学应知应会的知识点》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初三数学应知应会的知识点一元二次方程1.一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、c;其中a、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3.一元二次方程根的判别式:当ax2+bx+c=0(a≠
2、0)时,Δ=b2-4ac叫一元二次方程根的判别式.请注意以下等价命题:Δ>0<=>有两个不等的实根;Δ=0<=>有两个相等的实根;Δ<0<=>无实根;Δ≥0<=>有两个实根(等或不等).4.一元二次方程的根系关系:当ax2+bx+c=0(a≠0)时,如Δ≥0,有下列公式:※5.当ax2+bx+c=0(a≠0)时,有以下等价命题:(以下等价关系要求会用公式;Δ=b2-4ac分析,不要求背记)(1)两根互为相反数Û=0且Δ≥0Ûb=0且Δ≥0;(2)两根互为倒数Û=1且Δ≥0Ûa=c且Δ≥0;(3)只有一个零根Û=0且≠0Ûc=0且b≠0;(4)有两
3、个零根Û=0且=0Ûc=0且b=0;(5)至少有一个零根Û=0Ûc=0;(6)两根异号Û<0Ûa、c异号;(7)两根异号,正根绝对值大于负根绝对值Û<0且>0Ûa、c异号且a、b异号;(8)两根异号,负根绝对值大于正根绝对值Û<0且<0Ûa、c异号且a、b同号;(9)有两个正根Û>0,>0且Δ≥0Ûa、c同号,a、b异号且Δ≥0;(10)有两个负根Û>0,<0且Δ≥0Ûa、c同号,a、b同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ<0时,二次三项式在实数范围内不能分解.ax2+bx+c=a(x-x1)(x-x2)或ax2+bx+c=
4、.7.求一元二次方程的公式:x2-(x1+x2)x+x1x2=0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x):(1)第一年为a,第二年为a(1+x),第三年为a(1+x)2.(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.9.分式方程的解法:10.二元二次方程组的解法:※11.几个常见转化:;;初三数学应知应会的知识点圆几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.垂径定理及推论:如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径
5、定理”“中径定理”“弧径定理”“中垂定理”.几何表达式举例:∵CD过圆心∵CD⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1)∵∠AOB=∠COD∴AB=CD(2)∵AB=CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如
6、图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)几何表达式举例:(1)∵∠ACB=∠AOB∴……………(2)∵AB是直径∴∠ACB=90°(3)∵∠ACB=90°∴AB是直径(4)∵CD=AD=BD(1)(2)(3)(4)∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ABCD是圆内接四边形∴∠CDE=∠ABC∠C+∠A=180°6.切线的判定与性质定理:如图:有
7、三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径∵AB是切线∴OC⊥AB(3)……………7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例:∵PA、PB是切线∴PA=PB∵PO过圆心∴∠APO=∠BPO8.弦切角定理及其推论:(1)
8、弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(如图)(3)弦切角的度数等于它所夹的弧的度数
此文档下载收益归作者所有