正数和负数(1.1-1.2)(一)

正数和负数(1.1-1.2)(一)

ID:39508157

大小:1.70 MB

页数:37页

时间:2019-07-04

正数和负数(1.1-1.2)(一)_第1页
正数和负数(1.1-1.2)(一)_第2页
正数和负数(1.1-1.2)(一)_第3页
正数和负数(1.1-1.2)(一)_第4页
正数和负数(1.1-1.2)(一)_第5页
资源描述:

《正数和负数(1.1-1.2)(一)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章有理数知识回顾问题一:我们在小学学过哪些数?你能按照某一标准将它们分类?自然数:0、1、2、3……分数(小数):1/2、0.36、5%……数的产生和发展离不开生活和生产的需要随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要。观察下面三张图片再讨论问题:1、在图中你发现你还不很熟悉的数字了吗?2、凭你的经验,你能解释这些陌生数字的意义吗?3、请体验陌生的数字的用处,再思考一下生活中哪些地方还见过这些陌生的数字。生活再现问题背景1、天气预报2005年3月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?-3

2、~3℃2如何确定三个队的净胜球数与排名顺序?问题背景红队黄队蓝队积分净胜球红队4:10:132黄队1:41:03-2蓝队1:00:1303、某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5,(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?问题背景第一课时1.1正数与负数这里出现了一种新数:-3表示零下3摄氏度,-2表示净输2球,-0.5表示小于设计尺寸0.5mm而:3表示零上3摄氏度,2表示净胜2球,+0.5表示大于设计尺寸0.5mm概念引入我们把以前学过的数大于零叫做正数。有时在正数前面也加上“+”(正)号。

3、如+0.5、+3、+1/2……“+”号可以省略。我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。如-3、-0.5、-2/3……概念引入一个数前面的“+”、“-”号叫做它的符号。“-”号读着“负”,如:“-5”读着“负5”;“+”号读着“正”,如:“+3”读着“正3”。“+”号可以省略。练习首页上页下页1.读下列各数,指出下列各数中的正数、负数:+7、-9、4/3、-4.5、998、解:+7、4/3、988是正数,-9、-4.5是负数(2)与一个量成相反意义的量不止一个,如与上升2m成相反意义的量就很多,如:下降1m,下降0.2m,…

4、…(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。如前进8m与前进5m,上升与下降不是相反意义的量;因为前者意义相同,后者缺少数量。怎样理解具有相反意义的量(3)0既不是正数也不是负数。0是正负数的分界。0具有确定的含义。说明在同一问题中,用正、负数表示具有相反意义的量。收入300元和支出200元,零上6℃和零下4℃,向东30米和向西50米等等,如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然。对于两个具有相反意义的量,把哪一种意义规定为正,带有任意性,不过习惯上把向东、上升、盈利、运进、增加、收入等规定为正,

5、把它们的相反量规定为负的。怎样理解具有相反意义的量1.如果80m表示向东走80m,那么-60m表示。2.如果水位升高3m时水位变化记作+3m,那么水位下降3m时的水位变化记作m。3.月球表面的白天平均温度是零上126℃,记作℃,夜间平均温度是零下150℃,记作℃。用正负数表示相反意义的量向西走60m-3+126-150一个数不是正数就是负数,对吗?思考0既不是正数也不是负数。0是正负数的分界。观察下图,试着说明它们的海拔高度.珠穆朗玛峰的海拔高度为8844米,鲁番盆地的海拔高度为-155米.08844-155观察下图,试着说明它们的海拔高度.海平

6、面的高度如何表示?08844-155解释图中的正数和负数的含义10℃表示白天温度为零上10℃,-5℃表示晚上温度为零下5℃。它们以什么为基准?0只表示没有吗?1.空罐中的金币数量;2.温度中的0℃;3.海平面的高度;4.标准水位;5.身高比较的基准;6.正数和负数的界点;……引入正负数后,0不再简简单单的只表示没有.它具有丰富的意义,是正负数的基准。1、某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为,地面下的最低层表示为,某人乘电梯从地下最低层升至地上6层,电梯一共运行了层。探究活动3、若将

7、28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。探究活动2、东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?课堂小结:一、数的产生和发展离不开生活和生产的需要人们由记数、排序产生类似于1、2、3…这样的数,由表示“没有”“空位”,产生数0,由分物、测量、产生分数。历史上,负数概念产生的原因之一是因为解决实际问题中出现了“不够减”的情况。现实生活中存在着许多可以使用负数去表示的现象,因此负数的引入确实是生活的实际需要,生活中许多具有相反意义的量可以用正负数来表示。二、正数与负数通

8、常用来表示具有相反意义的量。0既不是正数也不是负数。0是正负数的分界。第二课时1.1正数与负数一个数不是正数就是负数,对吗?思考0既不是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。