A Comparative Study on Representing Units in Chinese Text Clustering

A Comparative Study on Representing Units in Chinese Text Clustering

ID:39508086

大小:349.07 KB

页数:11页

时间:2019-07-04

A Comparative Study on Representing Units in Chinese Text Clustering_第1页
A Comparative Study on Representing Units in Chinese Text Clustering_第2页
A Comparative Study on Representing Units in Chinese Text Clustering_第3页
A Comparative Study on Representing Units in Chinese Text Clustering_第4页
A Comparative Study on Representing Units in Chinese Text Clustering_第5页
资源描述:

《A Comparative Study on Representing Units in Chinese Text Clustering》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AComparativeStudyonRepresentingUnitsinChineseTextClustering1,21222WangHongjun,YuShiwen,LvXueqiang,ShiShuicai,andXiaoShibin1InstituteOfComputingLinguisticsPekingUniversity,Beijing100080;2ChineseInformationProcessingCenterBeijingInformationTechnologyInstitute,Beijing100101wang.hongjun@trs.com.cnAbstra

2、ct.Wordsandn-gramsarecommonlyusedChinesetextrepresentingunitsandareprovedtobegoodfeaturesforChineseTextCategorizationandInformationRetrieval.ButtheeffectivenessofapplyingtheserepresentingunitsforChineseTextClusteringisstilluncovered.ThispaperisacomparativestudyofrepresentingunitsinChineseTextCluster

3、ing.WithK-meansalgorithm,severalrepresentingunitswereevaluatedincludingChinesecharacterN-gramfeatures,wordfeaturesandtheircombinations.WefoundChinesewordfeatures,Chinesecharacterunigramfeaturesandbi-gramfeaturesmosteffectiveinourexperiments.Thecombinationoffeaturesdidn’timprovetheresults.Detailedexp

4、erimentalresultsonseveralpublicChineseTextCategorizationdatasetsareprovidedinthepaper.Keywords:ChinesetextClustering;N-gramfeature;Bi-gramfeature;Wordfeature.1IntroductionTextclusteringhasbeeninvestigatedforuseinanumberofdifferentareasoftextminingandinformationretrieval.Itplaysanimportantroleforeffi

5、cientdocument[1][2][3][4][5]organization,summarization,navigationandretrieval.Intextclustering,atextordocumentisalwaysrepresentedasabagofwords.ThereisnoboundarybetweenChinesewords,sosegmentationisthebasisforChineseTextProcessing.Manyeffectivesegmentationmethodshavebeenproposedinthepreviousstudies.Ho

6、wever,whenalargenumberofnewwordssuchasnames,locationnamesandcompanynamesappearinthetext,theresultofsegmentationis[6]usuallydissatisfactory.SomeresearcherstriedtouseChinesecharacterN-gramfeaturesinChinesetextcategorizationandinformationretrievalandproposedtheir[7][8][9]experimentresults.Buthowtochoos

7、eappropriaterepresentingunitsforChinesetextclusteringisstillaproblem.ThispaperusesChinesewords,N-gramsandtheircombinationsasrepresentingunitsandcomparestheirperformanceindocumentclustering.Theexperime

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。