好椭圆双曲线抛物线复习

好椭圆双曲线抛物线复习

ID:39502034

大小:1.96 MB

页数:55页

时间:2019-07-04

好椭圆双曲线抛物线复习_第1页
好椭圆双曲线抛物线复习_第2页
好椭圆双曲线抛物线复习_第3页
好椭圆双曲线抛物线复习_第4页
好椭圆双曲线抛物线复习_第5页
资源描述:

《好椭圆双曲线抛物线复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、椭圆双曲线抛物线复习课定义:定义:平面内到一个定点和一条定直线的距离的比等于定长e的点的集合,①当01时,是双曲线.③当e=1时,是抛物线.PFKoxy椭圆双曲线抛物线几何条件与两个定点的距离的和等于定值与两个定点的距离的差的绝对值等于定值与一个定点和一条定直线的距离相等标准方程图形顶点坐标yxB1B2A1A2OyxoF2F1MOFMP对称轴焦点坐标离心率准线方程渐近线方程yxB1B2A1A2OyxoF2F1MOFMP椭圆方程图形范围对称性顶点离心率xyB2B1A1A2YXB2B1A2A1oF1F2关于x轴,y轴,原点,对称。关于x轴,y轴,原点,对称。o

2、xy椭圆的几何性质由即说明:椭圆位于直线X=±a和y=±b所围成的矩形之中。例1求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点坐标把已知方程化成标准方程得因此,椭圆的长轴长和短轴长分别是离心率焦点坐标分别是四个顶点坐标是解:练习:解:例2解:xyNPMoR解法一:①②②①③④④例题:F2F1oPxy又

3、F1F2

4、=2c,PF1⊥PF2,如图,由椭圆的定义得

5、PF1

6、+

7、PF2

8、=2a证明:由此得

9、PF1

10、2+

11、PF2

12、2+2

13、PF1

14、

15、PF2

16、=4a2故

17、PF1

18、2+

19、PF2

20、2=

21、F1F2

22、2=4C2练习:看过程看过程双曲线综合复习焦点在x轴上的双曲线的几何性

23、质1.标准方程:2.几何性质:(1)范围:x≥a或x≤-a关于x轴,y轴,原点对称。A1(-a,0),A2(a,0)(4)轴:实轴A1A2虚轴B1B2(5)渐近线方程:(6)离心率:(2)对称轴:(3)顶点:YXA1A2B1B2F2F1焦点在y轴上的双曲线的几何性质1.标准方程:2.几何性质:(1)范围:Y≥a或y≤-a关于x轴,y轴,原点对称。A1(0,-a),A2(0,a)(4)轴:实轴A1A2虚轴B1B2(5)渐近线方程:(6)离心率:(2)对称轴:(3)顶点:oYXB1B2A1A2F2F2例1:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。把方程化为标准方程:可

24、得:实半轴长a=4虚半轴长b=3半焦距焦点坐标是(-5,0),(5,0)离心率:渐近线方程:解:方程2a2b范围顶点焦点离心率渐近线618

25、x

26、≥3(±3,0)y=±3x44

27、y

28、≥2(0,±2)1014

29、y

30、≥5(0,±5)例:已知双曲线的两个焦点的距离为26,双曲线上一点到两个焦点的距离之差的绝对值为24,求双曲线的方程。解:解:解一解二解三解一解二:故直线AB的斜率为2,解三练习854看过程抛物线综合复习课图形焦点准线标准方程xxxxyyyyooooFFFF练习:已知抛物线的焦点为F(-2,0)准线方程x=2,则抛物线方程为()A.B.C.D.解:故选B.(如图)yox解:解一

31、解二oyxFA解三oyxFAH证明:FOxyoAB例:证法2:证明一证明二:证明三:抛物线焦点弦的几何性质:1.当AB垂直于对称轴时,称弦AB为通径,

32、AB

33、=2P,PH练习B看答案解一:AP(4,1)oyxB如图,设所求直线方程为y-1=k(x-4)故所求直线方程为y-1=3(x-4)即3x-y-11=0.解二:如图,设所求直线方程为y-1=k(x-4)即得所求直线方程为解三:AP(4,1)oyxB如图,设所求直线方程为y-1=k(x-4)解四:即得所求直线方程为由(三)K=3或-3舍去-3得k=3解五:AP(4,1)oyxB设点因P(4,1)是AB的中点,则点B的坐标为Y=3x-

34、11解六:HGKTHEENDF2F1oPxy解法一解法二解法三返回F2F1oPxyH由余弦定理得:解一:oF2F1PxyM解二:又m+n=16m2+n2+2mn=256②由①②mn=48返回F2F1Pxy①由余弦定理得,xyoF2F1P解法一:如图,由已知得xyoF2F1P解法二:返回yxoF2F1P解:返回由余弦定理得:①②再见

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。