资源描述:
《高二数学合情推理与演绎证明》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新课标人教版课件系列《高中数学》选修1-22.1《合情推理与演绎证明-合情推理》教学目标1.了解演绎推理的含义。2.能正确地运用演绎推理进行简单的推理。3.了解合情推理与演绎推理之间的联系与差别。教学重点:正确地运用演绎推理进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”即:偶数=奇质数+奇质数哥德巴赫猜想(GoldbachConjecture)世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士
2、。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。(b)任何一个>=9之奇数,都可以表示成三个奇质数之和。这就是著的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从提出这个猜想至今
3、,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,....等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。哥德巴赫猜想(GoldbachConjec
4、ture)目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘sTheorem)?“任何充份大的偶数都是一个质数与一个自然数之和,而後者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为“1+2”的形式。哥德巴赫猜想(GoldbachConjecture)在陈景润之前,关於偶数可表示为s个质数的乘积与t个质数的乘积之和(简称“s+t”问题)之进展情况如下:1920年,挪威的布朗(Brun)证明了“9+9”。1924年,德国的拉特马赫(Rademacher)证明了“7+7”。1932年,英国的埃斯特曼(Esterman
5、n)证明了“6+6”。1937年,意大利的蕾西(Ricei)先後证明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,苏联的布赫夕太勃(Byxwrao)证明了“5+5”。1940年,苏联的布赫夕太勃(Byxwrao)证明了“4+4”。1948年,匈牙利的瑞尼(Renyi)证明了“1+c”,其中c是一很大的自然数。1956年,中国的王元证明了“3+4”。1957年,中国的王元先後证明了“3+3”和“2+3”。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了“1+5”,中国的王元证明了“1+4”。1965年,苏联的布赫夕
6、太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了“1+3”。1966年,中国的陈景润证明了“1+2”。最终会由谁攻克“1+1”这个难题呢?现在还没法预测。歌德巴赫猜想的提出过程:3+7=10,3+17=20,13+17=30,歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”即:偶数=奇质数+奇质数改写为:10=3+7,20=3+17,30=13+17.6=3+3,1000=29+971,8=3+5,1002=139+863,10=5+5,…12=5+7,14=7+7,16=5+11
7、,18=7+11,…,这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称;归纳)归纳推理的几个特点;1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.需证明例1:已知数列{an}的第1项a1=1且(n=1,
8、2,3…),试归纳出这个数列的通项公式.⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;⑶检验猜想