资源描述:
《2018届高考数学问题2函数中地存在性与恒成立问题提分练习201801182214》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文档2.2函数中的存在性与恒成立问题一、考情分析函数内容作为高中数学知识体系的核心,也是历年高考的一个热点.在新课标下的高考越来越注重对学生的综合素质的考察,恒成立与存在性问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数、三角函数、指数函数和对数函数等常见函数的图象和性质及不等式等知识,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用,故备受高考命题者的青睐,成为高考能力型试题的首选.二、经验分享(1)设,(1)上恒成立;(2
2、)上恒成立.(2)对于一次函数有:(3)根据方程有解求参数范围,若参数能够分离出来,可把求参数范围转化为求函数值域.(4)利用分离参数法来确定不等式,(,为实参数)恒成立中参数的取值范围的基本步骤:①将参数与变量分离,即化为(或)恒成立的形式;②求在上的最大(或最小)值;③解不等式(或),得的取值范围.(5)对于参数不能单独放在一侧的,可以利用函数图象来解.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.(6
3、)某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度.即把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果.文案大全实用标准文档三、知识拓展(1)恒成立问题①.∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②.∀x∈D,均有f(x)﹤A恒成立,则f(x)maxg(x)恒成立,则F(x)=f(x)-g(x)>0,∴F(x)min>0;④.∀x∈D,均有f(x)﹤g(x)恒成立
4、,则F(x)=f(x)-g(x)<0,∴F(x)max<0;⑤.∀x1∈D,∀x2∈E,均有f(x1)>g(x2)恒成立,则f(x)min>g(x)max;⑥.∀x1∈D,∀x2∈E,均有f(x1)A成立,则f(x)max>A;②.∃x0∈D,使得f(x0)﹤A成立,则f(x)ming(x0)成立,设F(x)=f(x)-g(x),∴F(x)max>0;④.∃x0∈D,
5、使得f(x0)g(x2)成立,则f(x)max>g(x)min;⑥.∃x1∈D,∃x2∈E,均使得f(x1)6、f(x1)>g(x2)成立,则f(x)min>g(x)min;②∀x1∈D,∃x2∈E,使得f(x1)=x+,设g(x)
7、=x+(1≤x≤2),g′(x)=1-,∵1≤x≤2,∴g′(x)<0,所以g(x)在[1,2]上是减函数.g(x)min=g(2),所以a>.【点评】解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax2>x3+10中x2∈[1,4],所以可以进行参数分离,而无需要分类讨论.【牛刀小试】【2017山西大学附中第二次模拟】设函数,其中,若存在唯一的整数,使得,则的取值范围是()A.B.C.D.【答案】D【解析】令.由题意知存在唯一整数,使得在直线的
8、下方.,当时,函数单调递减,当,函数单调递增,当时,函数取得最小值为.当时,,当时,,直线过定点,斜率为,故且,解得.文案大全实用标准文档(二)分离参数法【例2】已知函数的图象在点(为自然对数的底数)处的切线的斜率为.(1)求实数的值;(2)若对任意成立,求实数的取值范围.【分析】(1)由结合条件函数的图象在点处的切线的斜率为,可知,可建立关于的方程:,从而解得;(2)要使对任意恒成立,只需即可,而由(1)可知,∴问题即等价于