what quantum state really is

what quantum state really is

ID:39450743

大小:664.98 KB

页数:12页

时间:2019-07-03

what quantum state really is_第1页
what quantum state really is_第2页
what quantum state really is_第3页
what quantum state really is_第4页
what quantum state really is_第5页
资源描述:

《what quantum state really is》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Whatquantum“state”reallyis?AlexanderM.SOIGUINECopyright©2014Abstract:Togetoutoflogicaldeadlockininterpretinggedankenexperimentslike“Schrodingercat”,actualmeaningofa“wavefunction”,ora“state”,inthecaseofcomplextwo-dimensionalHilbertspace,isshowntorepresenttransformationsexecuti

2、ngbyelementsofevensubalgebraofgeometricalgebra[1],[2]overthree-dimensionalEuclidianspace.1Exodus23:21.IntroductionThegeometricalgebraG[1]formalismismoreprofoundcomparedtoformalquantummechanical3representationoftwo-stateobservablesby“complex”amplitudesascomponentsofelementsin

3、two-dimensionalHilbertspace.Ithasbeenusedintodescribetossedcoinexperimentthatwasprettysimilartotraditionalquantummechanicalformalism[3].MathematicalframewillhereistheevensubalgebraGofelements:3so,,SISofgeometricalgebraGoverEuclidianspaceE.Ghasthebasis3331,e,e,e,ee,e

4、e,ee,eee,123122331123whereeiareorthonormalbasisvectorsinE3,eiej-oriented,mutuallyorthogonalunitvalueareasspannedbyeiandejasedges,e1e2e3-unitvalueorientedvolumespannedbyorderededgese1,e2ande.31Youshallnotfollowthemajorityforevil,andyoushallnotrespondconcerningalawsuittofo

5、llowmanytopervert[justice].12SubalgebraGisspannedby1,ee,ee,ee.Variablesandinso,,Sare(real)scalars,3122331Iisaunitsizeorientedarea(lefthandedorrighthanded)inanarbitrarygivenplaneSE.S3Iexplainedindetail[4],[5]thatelementsso,,SIonlydifferfromwhatistraditionally

6、Scalled“complexnumbers”bythefactthatSEisanarbitrary,variableplaneandisnotthewhole3spaceofgame.Puttingitsimply,Iare“complexnumbers”dependingonEembeddedintoE.S23E2isthespacewhereSbelongs.Traditional“imaginaryunit”iisjustISwhenitisnotnecessarytospecifytheplane–everythingisgo

7、ingoninonefixedplane,notin3Dworld.Fullyformalwayofusingi2asa“number”,justwithadditionalalgebraicpropertyi1,maybeasourceofdeeplywronginterpretations,particularlyinquantummechanics.2.RotationsandelementsofG3IfgiselementofG,itsrotationin3Dcanbewrittenas[1],[2]:33g(I)g(

8、I),3S3S22whereIbeebeebeeisunitvalueelementofG,that’s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。