欢迎来到天天文库
浏览记录
ID:39402185
大小:260.50 KB
页数:77页
时间:2019-07-02
《基于动态递归神经网络及相空间重构理论的深基坑工程变形预测研究》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、同济大学土木工程学院硕士学位论文基于动态递归神经网络及相空间重构理论的深基坑工程变形预测研究姓名:赵启嘉申请学位级别:硕士专业:岩土工程指导教师:刘国彬20080301摘要训练网络及评价网络预测性能等内容;(2)研究神经网络预测方法在基坑变形上的适用性,总结了影响预测效果的几个因素,特别是数据样本的采集和数据变形“突变”的因素对模型预测效果的评价,并基于这些问题,引入了相空间重构的思想;(3)结合相空间重构理论,在Elman网络模型的基础之上,对时序数列进行重新定义,并结合工程实际,提出了相空间重构理论中的嵌入滞时r和嵌入维数m二个重要参数,将修正后的预测结果
2、与之前的预测结果进行对比,分析了预测对比效果;关键词:地铁深基坑动态递归神经网络相空间重构变形预测Ⅱ摘要ABSTRACTWiththeameliorationofurbanrailtransitnetworkinShanghai,projectsofthemetroconstructionhaveshowedsixtrends.Thatisthefoundationpitsbecomedeeper'thescaleofconstructionsisgettinglarger,thedistancebetweenbuildingsandsubwayisgetti
3、ngcloser,thetimelimitforconstructionsismoreurgent,thegeologicfeatureismorecomplex,thehiddentroublesaremoreandmore.Howtoaccomplishthenodetargetofcompleting400kmbasicnetworkinboth‘quickandsatisfactory’wayunderthesituationoflargescale,leapingoverstyle,highintegrationofriskbecomesaquest
4、ionforthesubwayconstructorsinShanghai.ThispaperconcentratesontheevaluationofsafetyanddeformmionpredictionofthefoundationpitsofsubwaystationsinShanghaisoftsoilfromtheneedsofrealprojects.Neuralnetworkmethodisoneofthemosteffectivemethodsofdeepfoundationpitdeformationprediction,whichisa
5、nintelligentmonitormethodcombineddeformationforecastwithcontr01.TheadvantageofneuralnetworkliesinitprovideamathematicstoolwhichCanstudyandforecastbyitself.Inthispaper'theElmanneuralnetworkisusedtointelligentlymonitordeepfoundationexcavation.TheElmanneuralnetworkisatypicallydynamicre
6、cunentneuralnetworkwhichisabletolearntemporalpatternsaswellasspatialpaRems.Therefore,thetrainedElmanneuralnetworkhasthecharacteristicsofthenonlinearanddynamic.AtthesametimeElmanneuralnetworkavoidsthedrawbackoftraditionalneuralnetworkwhichcannotchangethemodelstructurerealtimeandCanno
7、tadapttotheabruptchange.Themainideasofthepaperarelistedasfollows:(1)DesignmonitorsystemscientificallyandputrigorousandeffectivemonitorinpracticeSOaswellandtrulyshowallkindsofpulseofstructureandenvironment,andaccordinglyprovidereliablyandroundlybasicinformationfordesignandconstructio
8、n;(2)Basedonintelli
此文档下载收益归作者所有